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Roadmap
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Sample efficiency


• Sample efficiency of data augmentation 
consistency regularization


• Adaptively weighted data augmentation 
consistency regularization for distributionally 
robust optimization under concept shift

Computational efficiency


• Randomized pivoting-based interpolative & 
CUR decompositions


• Randomized subspace approximation: 
efficient canonical angle bounds & estimates



Randomized Pivoting Algorithms for 
Interpolative and CUR Decompositions
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Based on joint work with: Per-Gunnar Martinsson


Dong Y, Martinsson PG. Simpler is better: a comparative study of randomized algorithms for computing the CUR 
decomposition. arXiv preprint arXiv:2104.05877. 2021 Apr 13.



Matrix Skeleton Selection: Overview
• Inputs: , target rank   Outputs: column/row skeletons  and/or 





• Interpolative decomposition (ID)





• CUR decomposition


A ∈ ℂm×n k ≤ rank(A) ⇒ Jk ⊆ [n] Ik ⊆ [m]

C = A(: , Jk) R = A(Ik, :)

A ≈ C (CA†)

A ≈ C (C†AR†) R
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Key questions on randomized pivoting-based skeleton selection:


• Can we find a general framework that unifies the existing strategies?


• Are there more efficient alternatives to the existing algorithms?

Pivoting-based selection


• Column-pivoted QR


• (Strong) rank-revealing QR


• DEIM (SVD + LU with partial 
pivoting)

Sampling-based selection


• Uniform sampling


• Leverage score sampling


• Volume sampling

Refer to (D., Martinsson, 2021) 
Section 3 for a brief survey



• Gaussian matrices


• Subsampled randomized 
trigonometric transforms


• CountSketch


• Sparse sign matrices

Randomized Pivoting-based Skeleton Selection: A General Framework
• Inputs: , sample size  with , number of power iterations 


• Outputs:  and/or  such that , 

A ∈ ℂm×n l k < l ≤ r = rank(A) q ∈ {0,1,⋯}

Jl ⊆ [n] Il ⊆ [m] C = A(: , Jl) ∈ ℂm×l R = A(Il, :) ∈ ℂl×n
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Reduction stage: randomized dimension reduction / sketching


1. Draw randomized linear embedding  (e.g.,  i.i.d.)


2. Construct a random row space approximate 


1. Sketching on :  (with optional step-wise orthonormalization)


2. Randomized SVD (RSVD) of : 

Γ ∼ P(ℂl×m) Γij ∼ 𝒩(0,1/l)

X ∈ ℂl×n

A X = ΓA(A*A)q

A [ ∼ , ∼ , X] = svd(ΓA(A*A)q)

Pivoting stage: greedy skeleton selection 


1. Column-wise pivoting on 


2. (For CUR) row-wise pivoting on 

X ⇒ Jl

C = A(: , Jl) ⇒ Il

Common pivoting schemes:


• Column pivoted QR (CPQR)


• LU with partial pivoting (LUPP) 

• sketching is more efficient 
than RSVD by O(nl2)



Efficiency of Dimension Reduction + Pivoting
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Runtime of sketching + LU with partial pivoting (LUPP) / sketching + column pivoted QR 
(CPQR)  / randomized SVD + LUPP (DEIM) on  column-wiselyX ∈ ℂl×n

• Runtime: LUPP DEIM CPQR 


• Despite the same asymptotic 
complexity , LUPP is much 
more efficient than CPQR in practice


• LUPP and its variations (e.g., CALU) 
enjoy better parallelizability 
compared to CPQR

≪ <

O(nl2)

• LUPP is less stable than CPQR:


• Not rank-revealing


• Vulnerable to rank-deficiency


• Randomization stabilizes LUPP!


• Sketching is “spectrum-revealing”


• Sketching yields maximum-rank 
sample matrices almost-surely



Pivoting-based Skeletonization Error: Posterior Guarantee
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• Assume  admits full row rank. Let  be the first  pivoted columns and  be 
the rest such that . Then, for ,


   

X ∈ ℂl×n X1 ∈ ℂl×l l X2 ∈ ℂl×(n−l)

X [Π1, Π2] = [X1, X2] ξ ∈ {2,F}

∥A − CC†A∥ξ ≤ η
⏟

pivoting error

⋅ ∥A − AX†X∥ξ

reduction error

, η ≤ 1 + ∥X†
1X2∥2
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Theorem. (Posterior error guarantee of pivoting-based skeleton selection)

X

Π1 Π2

X1 X2 L*1 L*2U*= =

n

l

l n − l l n − l l n − l

Reduction stage


• Row sketch 


• Approximated right singular 
vectors 

X = ΓA

[ ∼ , ∼ , X] = svd(ΓA)

Pivoting stage


• LU-based: LUPP


• QR-based: CPQR



Randomization Stabilizes LUPP:  in practice η = O(l)
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• Worst-case pivoting error factor: 
 for both LUPP and CPQR 

(e.g., Kahan matrix)


• With randomization via sketching, 
we observe  in practice 
(cf. Trefethen et al, 1990)

η = Θ(2l)

η = O(l)

Trefethen LN, Schreiber RS. Average-case stability of Gaussian elimination. SIAM Journal on Matrix Analysis and Applications. 1990 Jul;11(3):335-60.



Efficient Alternative: Sketching + LUPP
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X

Π1 Π2

X1 X2 L*1 L*2U*= =

n

l

l n − l l n − l l n − l

Reduction stage: sketching


• Efficiency: sketching  RSVD


• Accuracy: RSVD  sketching

>

≳

Pivoting stage: LUPP


• Efficiency: LUPP  CPQR


• Stability without sketching: CPQR  LUPP


• Stability with sketching: CPQR  LUPP

>

≫

≈

1. Voronin S, Martinsson PG. Efficient algorithms for CUR and interpolative matrix decompositions. Advances in Computational Mathematics. 2017 Jun;43:495-516.

2. Sorensen DC, Embree M. A deim induced cur factorization. SIAM Journal on Scientific Computing. 2016;38(3):A1454-82.

Existing algorithms


• (Voronin et al, 2017): Sketching + CPQR


• (Sorensen et al, 2016): (R)SVD + LUPP (DEIM)

More efficient alternative: Sketching + LUPP


• Sketching stage: 


• Pivoting stage: LUPP on  column-wisely

X = ΓA

X



Accuracy & Efficiency of Sketching + LUPP: MNIST

• Rand-LUPP (ours): sketching + LUPP 

• Rand-CPQR: sketching + CPQR

• RSVD-DEIM: RSVD + LUPP

• RSVD-LS: leverage score with approximated singular vectors from RSVD

• SRCUR: spectrum-revealing CUR (Chen et al, 2020) based on spectrum-revealing pivoting schemes

(with  power iteration)q = 1
(with  power iteration)q = 1
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Chen C, Gu M, Zhang Z, Zhang W, Yu Y. Efficient spectrum-revealing CUR matrix decomposition. InInternational Conference on Artificial Intelligence and Statistics 2020 Jun 3 (pp. 
766-775). PMLR.

Accuracy


• Rand-LUPP  RSVD-DEIM  Rand-CPQR 
 RSVD-LS  SRCUR


•  boosts accuracy sufficiently


Efficiency


• Rand-LUPP  RSVD-LS  RSVD-DEIM  
Rand-CPQR  SRCUR

≈ ≈
> >

q = 1

> > >
>



Randomized Subspace Approximations: 
Efficient Bounds and Estimates for 

Canonical Angles
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Based on joint work with: Per-Gunnar Martinsson, Yuji Nakatsukasa


Dong Y, Martinsson PG, Nakatsukasa Y. Efficient Bounds and Estimates for Canonical Angles in Randomized 
Subspace Approximations. arXiv preprint arXiv:2211.04676. 2022 Nov 9.



Leading Singular Subspaces
• Singular value decomposition (SVD)


Given , , rank-k truncated SVD:





• Maximum-k singular values: 


• Leading-k singular subspaces: 


• Eckart–Young–Mirsky theorem





• Truncated SVD provides the optimal rank-k approximation


• Broad Applications


• Low-rank approximations, PCA, CCA, spectral clustering, 
leverage score sampling, etc.

A ∈ ℂm×n 1 ≤ k ≤ r = rank(A)

Ak = Uk
m×k

Σk
k×k

V*k
k×n

Σk = diag(σ1, …, σk)

U*k Uk = V*k Vk = Ik

Ak = min
rank( ̂A )≤k

∥A − ̂A ∥F
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Spectral clustering on the dimension-6 
leading singular subspace of a mini-MNIST 

dataset (8  8 images of digits 0-5)×

Sketching: Approximate leading singular subspaces 
efficiently for large matrices


Questions: How accurate are these approximations? 
Tight & efficiently computable error bounds & estimates?



Isotropic embedding: 
uniform over unit sphere

Key observations: with  being the spectrum of 


• For any ,  power iterations correspond to 


• Compared to ,  enjoys half more power iterations (i.e., )

Σ A

q ∈ ℕ q Σ2q+1

̂U l
̂V l Σ2q+2

Randomized Subspace Approximations with Sketching
• Inputs: , sample size  with  (e.g., ), number of power iterations 

 (  usually)


• Outputs:  such that 


1. Randomized linear embedding (Johnson-Lindenstrauss transforms, etc.)


• Draw  with i.i.d. entries  such that 


2. Sketching with power iterations


• Randomized power iterations (unstable): 


• Randomized subspace iterations (stable): 


3. 


4. 


5.

A ∈ ℂm×n l k < l ≤ r = rank(A) l = 2k ≪ r
q ∈ {0,1,2,⋯} q ≤ 2

RSVD(A, l, q) = ( ̂U l ∈ ℂm×l, ̂Σ l ∈ ℂl×l, ̂V l ∈ ℂn×l) ̂A l = ̂U l
̂Σ l

̂V *l ≈ A

Ω ∼ P(ℂn×l) Ωij ∼ 𝒩(0,l−1) 𝔼[ΩΩ*] = In

X(q) = (AA*)qAΩ

X(0) = ortho(AΩ), X(i) = ortho(A ortho(A*X(i−1))) ∀ i ∈ [q]

QX = ortho(X(q))

[ Ũ l, ̂Σ l, ̂V l] = svd(A*QX)

̂U l = QX Ũ l
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Canonical Angles: Alignment between Subspaces
• Canonical angles  measure the alignment between two subspaces  with 

dimensions  respectively (  w.l.o.g), e.g.,  


• True leading singular subspace: 


• Approximated leading singular subspace: 


• Left & right canonical angles of : ,





∠(𝒰, 𝒱) = (θ1, ⋯, θk) 𝒰, 𝒱 ⊆ ℂd

k, l ≤ d k < l

𝒰 = range(Uk)

𝒱 = range( ̂U l)

RSVD(A, l, q) = ( ̂U l, ̂Σ l, ̂V l) ∀ i ∈ [k]

sin∠i(Uk, ̂U l) = σk−i+1((Im − ̂U l
̂U *l )Uk), cos∠i(Uk, ̂U l) = σi( ̂U *l Uk)

sin∠i(Vk, ̂V l) = σk−i+1((Im − ̂V l
̂V *l )Vk), cos∠i(Vk, ̂V l) = σi( ̂V *l Vk)
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Prior v.s. posterior guarantees: computed without v.s. with the outputs 


• Prior guarantees are probabilistic, with randomness from 


• Posterior guarantees are deterministic with given 

( ̂U l, ̂Σ l, ̂V l)

Ω ∼ P(ℂn×l)

( ̂U l, ̂Σ l, ̂V l)



• With Gaussian embedding; small  such that ; oversampling 


• Notice that  and usually .  refers to a realistic case with non-negligible approximation error: 
when the tail of the spectrum  remains non-trivial after  power iterations


• With high probability (at least ), there exist  such that, 








• In practice, taking  is sufficient for upper bounds when  and 

q ∈ ℕ η ≜ (
r

∑
j=k+1

σ4q+4
j )

2

/
r

∑
j=k+1

σ2(4q+4)
j = Ω(l) l = Ω(k)

1 < η ≤ r − k r − k ≫ l η = Ω(l)
{σj}r

j=k+1 q

1 − e−Θ(k) − e−Θ(l) ϵ1 = Θ( k/l), ϵ2 = Θ( l/η), ϵ1, ϵ2 ∈ (0,1) ∀ i ∈ [k]

(1 + Oϵ1,ϵ2(
l ⋅ σ4q+2

i

∑r
j=k+1 σ4q+2

j ))
− 1

2

≤ sin∠i(Uk, ̂U l) ≤ (1 +
1 − ϵ1

1 + ϵ2
⋅

l ⋅ σ4q+2
i

∑r
j=k+1 σ4q+2

j )
− 1

2

(1 + Oϵ1,ϵ2(
l ⋅ σ4q+4

i

∑r
j=k+1 σ4q+4

j ))
− 1

2

≤ sin∠i(Vk, ̂V l) ≤ (1 +
1 − ϵ1

1 + ϵ2
⋅

l ⋅ σ4q+4
i

∑r
j=k+1 σ4q+4

j )
− 1

2

ϵ1 = k/l, ϵ2 = l/(r − k) l ≥ 1.6k q ≤ 10

Space-agnostic Prior Probabilistic Bounds
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Theorem. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))



Recall the correspondence in 
Theorem 1:





where the smaller values lead 
to the tighter upper bounds

1
l

r

∑
j=k+1

σ4q+2
j ≤

n − k
l

σ4q+2
k+1

Comparison with Existing Prior Probabilistic Guarantees

• Given , let  and . Then,  and 


• Prior work (Saibaba, 2018) : 





where for , given any , with probability at least ,





• Theorem 1 is space-agnostic since the randomized linear embedding  is isotropic 


• Only depends on the spectrum  , but not on the singular subspaces  or 


• In proof, we took an integrated view on the concentration of 

Ω ∼ P(ℂn×l) Ω1 ≜ V*k Ω Ω2 ≜ V*r∖kΩ Ω1 ∼ P(ℂk×l) Ω2 ∼ P(ℂ(r−k)×l)

1

sin∠i(Uk, ̂U l) ≤ (1 +
σ4q+2

i

σ4q+2
k+1 ∥Ω2Ω†

1∥2
2 )

− 1
2

, sin∠i(Vk, ̂V l) ≤ (1 +
σ4q+4

i

σ4q+4
k+1 ∥Ω2Ω†

1∥2
2 )

− 1
2

l ≥ k + 2 δ ∈ (0,1) 1 − δ

∥Ω2Ω†
1∥2 ≤

e l
l − k + 1 ( 2

δ )
1

l − k + 1

( n − k + l + 2 log
2
δ ) = Ω( n − k

l )
Ω ∼ P(ℂn×l)

{σj}r
j=1 (Uk, Ur\k) (Vk, Vr\k)

Σ2q+1
r∖k Ω2
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Saibaba, Arvind K. "Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms." SIAM Journal on Matrix Analysis and Applications 40.1 (2019): 23-48.



Corresponds to  in 

the upper/lower bounds of Theorem 1

1 ∓ ϵ1

1 ± ϵ2
⋅

l ⋅ σ4q+2
i

∑r
j=k+1 σ4q+2

j

• Draw independent Gaussian random matrices  and 


• Unbiased canonical angle estimates  such that





 


• Low variance in practice (i.e., negligible when )


• Can be computed efficiently with  operations (for a given spectrum )


• For any , without further assumptions on the sample size (e.g., )

{Ω( j)
1 ∼ P(ℂk×l) j ∈ [N]} {Ω( j)

2 ∼ P(ℂ(r−k)×l) j ∈ [N]}
αi = 𝔼 [sin∠i(Uk, ̂U l)], βi = 𝔼 [sin∠i(Vk, ̂V l)] ∀ i ∈ [k]

sin∠i(Uk, ̂U l) ≈ αi =
1
N

N

∑
j=1 (1 + σ2

i (Σ2q+1
k Ω( j)

1 (Σ2q+1
r∖k Ω( j)

2 )
†))

− 1
2

sin∠i(Vk, ̂V l) ≈ βi =
1
N

N

∑
j=1 (1 + σ2

i (Σ2q+2
k Ω( j)

1 (Σ2q+2
r∖k Ω( j)

2 )
†))

− 1
2

N ≥ 3

O(rl2) Σ

k ≤ l ≤ r η = Ω(l), l = Ω(k)

Unbiased Space-agnostic Estimates
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1. Posterior bounds based on full residuals: Theorem 2. (D., Martinsson, Nakatsukasa, 2022)


• 


• Deterministic and algorithm-independent (e.g., holds for any , and any embedding )


• Can be approximated with  operations


2. Posterior bounds based on sub-residuals: Theorem 3.


• Let , , , , . 

Assume . Then, for any unitary invariant norm , 


• Deterministic and holds for any , and any embedding 


• Can be approximated with  operations

sin∠i(Uk, ̂U l) ≤
σk−i+1 ((Im − ̂U l

̂U *l ) A)
σk

∧
σ1 ((Im − ̂U l

̂U *l ) A)
σi

k ≤ l ≤ r Ω

O(mnl)

E31 ≜ ̂U *m∖lA ̂V k E32 ≜ ̂U *m∖lA ̂V l∖k E33 ≜ ̂U *m∖lA ̂V n∖l Γ1 ≜
σ2

k − ∥E33∥2
2

σk
Γ2 ≜

σ2
k − ∥E33∥2

2

∥E33∥2
σk > ∥E33∥2 ∥ ⋅ ∥ ∥ sin∠(Uk, ̂U l)∥ ≤ ∥[E31, E32]∥/Γ1

k ≤ l ≤ r Ω

O(mnl)
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Posterior Residual-based Guarantees



Space-agnostic bounds & estimates win on MNIST: 

Polynomial spectral decay
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Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true/approximated singular values

Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, 

Magenta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces

Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

ϵ1 = k/l, ϵ2 = l/(r − k) shade  min/max in 
 samples 

negligible variance!

=
N = 3 ⇒

Black line: true 
canonical angles


l = 1.6k

q ∈ {0,1}


l = 1.6k

q ∈ {5,10}
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Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based 
bounds in Theorem 2 & 3 (with true/approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and ϵ1 = k/l, ϵ2 = l/(r − k)

How about space-agnostic lower bounds in practice: MNIST


l = 4k

q ∈ {0,1}



Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based 
bounds in Theorem 2 & 3 (with true/approximated singular values), and true canonical angles

When are posterior bounds more effective:

Exponential spectral decay + low-error regimes

21


l = 1.6k

q ∈ {0,1}


l = 4k

q ∈ {0,1}



Sample Efficiency of Data Augmentation 
Consistency Regularization
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Based on joint work with: Shuo Yang, Rachel Ward, Inderjit Dhillon, Sujay Sanghavi, Qi Lei


Yang S, Dong Y, Ward R, Dhillon IS, Sanghavi S, Lei Q. Sample efficiency of data augmentation consistency 
regularization. arXiv preprint arXiv:2202.12230. 2022 Feb 24.



Population risk

Empirical risk

Generalization gap & sample complexity:





with high probability over  

L ( ̂h (X,y)) − L(h*) ≤ Õ ( Complexity(ℒ, ℋ)
n )

(X, y) ∼ P(x, y)n

Red

Blue

h*

Generalization & Sample Complexity
Learn unknown population


• As ground truth distribution 


• Within a function (hypothesis) class 


• Through a proper loss function  with 

ground truth 

P : 𝒳 × 𝒴 → [0,1]

ℋ ∋ h : 𝒳 → 𝒴

ℓ : 𝒴 × 𝒴 → ℝ
h* ≜ argmin

h∈ℋ
{L(h) ≜ 𝔼(x,y)∼P [ℓ(h(x), y)]}
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From limited samples


• As training data 


• Via learning algorithm , e.g., empirical risk minimization 

(ERM): 

(X, y) = {(xi, yi)}n
i=1

∼ P(x, y)n

ℒ

̂h (X,y) ≜ argmin
h∈ℋ { ̂L (X,y)(h) ≜

1
n

n

∑
i=1

ℓ(h(xi), yi)}

̂h (X,y)



• A transformation  that preserves semantic information in , e.g., random rotation, 
cropping, color jittering on images


• Consider an augmented training set of  with  augmentations  per 

sample : with  being the vertical stack of  identity matrices,

A : 𝒳 → 𝒳 x ∈ 𝒳

(X, y) ∼ P(x, y)n α ∈ ℕ {xi,j = Ai,j(xi)}j∈[α]

i ∈ [n] M = [In; ⋯; In] ∈ ℝ(1+α)n×n n × n

(𝒜(X), My) = ([x1, ⋯, xn, x1,1, ⋯, xn,1, ⋯, x1,α, ⋯, xn,α]⊤, [y; y; ⋯; y]) ∈ 𝒳(1+α)n × 𝒴(1+α)n,

Data Augmentation

24

• Proper data augmentations lead to better generalization and sample complexity


• Ubiquitous in SOTA methods, with diverse designs (e.g., Mixup, Cutout, RandAugment, UDA, etc.)



Data Augmentation
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• Semi-supervised learning


• Data augmentation consistency (DAC) regularization


• E.g., MixMatch (Berthelot et al, 2019), Fixmatch (Sohn 
et al, 2020)

Sources of potency?


• Large amounts of unlabeled data


• Effective algorithms for utilizing data augmentations

Semi-supervised learning with DAC regularization 
via FixMatch (Sohn et al, 2020, Fig. 1)

• Self-supervised learning


• Contrastive learning


• E.g., MoCo (He et al, 2020), SimCLR (Chen et al, 2020)

xi

x+
i

x−
i,1, ⋯, x−

i,N

⋯

Data 
augmentation 
x+

i ∼ 𝒜xi
(x)

Instance 
discrimination 

x−
i,j ∼ P(x)

max
ϕ

ϕ(xi)⊤ϕ(x+
i )

∥ϕ(xi)∥2∥ϕ(x+
i )∥2

min
ϕ

N

∑
j=1

cos∠(ϕ(xi), ϕ(x−
i,j))

Contrastive 
loss

https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/2001.07685.pdf
https://arxiv.org/pdf/2001.07685.pdf
https://arxiv.org/pdf/2001.07685.pdf
https://arxiv.org/pdf/1911.05722.pdf
https://arxiv.org/pdf/2002.05709.pdf


Algorithmic Choices of Leveraging Data Augmentation in Supervised Learning
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Whether potency of DAC comes merely 
from unlabeled data, or 


DAC has intrinsic algorithmic advantage 
over DA-ERM?

DA-ERM: ERM on augmented training samples 


•

(𝒜(X), My)
̂hDA-ERM
(X,y) ≜ argmin

h∈ℋ

n

∑
i=1

ℓ(h(xi), yi) +
n

∑
i=1

α

∑
j=1

ℓ(h(xi,j), yi)

DAC: data augmentation consistency regularization


•



•  is a representation function associated with 


•  is a (latent) metric space with metric 


•  where  encapsulates semantic information in 


• E.g.,  = neural network,  = linear classifier, 

̂hDAC
(X,y) ≜ argmin

h∈ℋ

n

∑
i=1

ℓ(h(xi), yi) + λ
n

∑
i=1

α

∑
j=1

ϱ(ϕh(xi,j), ϕh(xi))

DAC regularization

ϕh : 𝒳 → 𝒲 h ∈ ℋ

𝒲 ϱ : 𝒲 × 𝒲 → ℝ≥0

h = fh ∘ ϕh ϕh(x) x

ϕh fh ϱ(u, v) = ∥u − v∥2

• Apple-to-apple comparisons in 
supervised learning setting 


• With limited random augmentations


• With “good”/“bad” augmentations


• From linear model to neural network



Label-invariant (“Good”) v.s. Misspecified (“Bad”) Data Augmentations
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• Label-invariant (“good”) augmentation


• Augmentation preserves labels: 


•  for all 

P(y ∣ x) = P(y ∣ A(x))

ϱ(ϕh*(xi,j), ϕh*(xi)) = 0 i ∈ [n], j ∈ [α]

• Misspecified (“bad”) augmentation


• Augmentation perturbs labels: 


•

P(y ∣ x) ≠ P(y ∣ A(x))

0 <
n

∑
i=1

α

∑
j=1

ϱ(ϕh*(xi,j), ϕh*(xi)) < Cmis

Rabbit

Rabbit

Rabbit

Wood

Label-invariant

augmentation

Label-invariant

augmentation

Misspecified

augmentation



Linear Regression + Label-invariant Augmentation
• Dimension-  linear regression:  with , 


• , 


• Without data augmentation: assume , 

d ( X
n×d

, y) = {(xi, yi) ∈ ℝd × ℝ}n
i=1

y = Xθ* + ϵ ϵ ∼ 𝒩(0,σ2In)

θ* = argmin
θ∈ℝd {L(θ) ≜ 𝔼ϵ∼𝒩(0,σ2In) [ 1

n
∥y − Xθ∥2

2]} ̂θ ERM = argmin
θ∈ℝd { ̂L(θ) ≜

1
n

∥y − Xθ∥2
2}

rank(X) = d 𝔼ϵ∼𝒩(0,σ2In) [L ( ̂θ ERM) − L (θ*)] =
dσ2

n
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• Label-invariant augmentations:  such that 


• Augmentation strength:  such that larger   stronger augmentation


• Assume , taking  (i.e., DAC constraint ), with  

where  denotes the orthogonal projector onto :

Δ ≜ 𝒜(X) − MX ∈ ℝn×d Δθ* = 0

daug ≜ rank(Δ) daug ⇒

rank(𝒜(X)) = d λ → ∞ Δθ = 0 d′￼≜
1

1 + α
tr ((𝒜(X)𝒜(X)† − P𝒮) MM⊤) ∈ [0,daug]

P𝒮 𝒮 ≜ {MXθ ∣ Δθ = 0}

𝔼ϵ [L ( ̂θ DAC) − L (θ*)] =
(d − daug)σ2

n
𝔼ϵ [L ( ̂θ DA−ERM) − L (θ*)] =

(d − daug + d′￼)σ2

n



[x1; x2] ∈ ℝd−d0

x0 ∈ ℝd0

θ* ∈ Null(Δ)

Linear Regression + Label-invariant Augmentation
Example 1


• Ground truth:  with 


• Semantic subspace  & spurious subspace 


• Data: , ,  such that , 


• Augmentation:  such that 

θ* = [θ1, ⋯, θd0
,0,⋯,0] θi ∼ 𝒩(0,1) ∀ i ∈ [d0]

d0 < d d − d0 = d1 + d2

n = 50 d = 30 P(x) = 𝒩(0,Id) x = [x0
d0

; x1
d1

; x2
d2

] σ = 1

A([x0; x1; x2]) = [x0; 2x1; − x2] daug = d − d0
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dim(Null(Δ)) = d − daug

ℋDAC = {θ ∣ Δθ = 0}

x, θ* ∈ ℝd

ℋERM = ℝd



Beyond Label-invariant Augmentation
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• Misspecified augmentations:  whereas 


• Recall , denote , , 


• Let , , , , 


• Assume there exist  such that  and . Then, with the optimal choice of :


Δ = 𝒜(X) − MX ∈ ℝn×d Δθ* ≠ 0

daug = rank(Δ) PΔ = Δ†Δ Δ̃ = (MX𝒜(X)†) Δ S =
1

1 + α
M⊤𝒜(X)

ΣX =
1
n

X⊤X Σ𝒜(X) =
1

(1 + α)n
𝒜(X)⊤𝒜(X) ΣΔ =

1
(1 + α)n

Δ⊤Δ ΣΔ̃ =
1

(1 + α)n
Δ̃ ⊤ Δ̃ ΣS =

1
n

S⊤S

cX, cS > 0 Σ𝒜(X) ≼ cXΣX Σ𝒜(X) ≼ cSΣS λ

𝔼ϵ [L ( ̂θ DAC) − L (θ*)] ≤
(d − daug)σ2

n
+ PΔθ*

ΣΔ

σ2

n
tr (ΣXΣ†

Δ)
𝔼ϵ [L ( ̂θ DA−ERM) − L (θ*)] ≥

dσ2

n ⋅ cXcS
+ PΔθ*

2

ΣΔ̃

BiasVariance

•  measures misspecification of augmentations  in 


• For DA-ERM, the bias term  induced by misspecification  fails to vanish as 

PΔθ* 𝒜(X) θ*

PΔθ*
2

ΣΔ̃

Δθ* ≠ 0 n → ∞



Example 2


• Ground truth:  

with , 


• Data: , , , 

 such that 

, 


• Augmentation:  

with   




• Misspecification in ground truth: 

θ* = [θ1, ⋯, θd0
,0,⋯,0]

θi ∼ {±1} ∀ i ∈ [d0] d0 < d

n = 50 d = 30 d0 = 10
P(x) = 𝒩(0,Id)
x = [ x0

d−daug

; x1
daug

] σ = 0.1

A([x0; x1]) = [x0; x1 + x′￼1]
x′￼1 ∼ 𝒩(0,σ2Idaug

) ⇒

ℙ [rank(Δ) = daug] = 1

[θd−daug+1, ⋯, θd0]
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Beyond Label-invariant Augmentation

• The optimal  implicitly incorporates 
knowledge on the upper bound of 
misspecification 


• Less misspecification  larger 

λ

PΔθ*
ΣΔ

⇒ λ

• Misspecified dimension: 


• DAC is more robust to misspecification 
(with larger )


• DAC leverages augmentations more 
efficiently (with smaller )

daug − d0

daug

α



Beyond Linear Model
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• Two-layer ReLU network regression 


• :  where  and , , 


• Bounded ground truth: , 


• Function class: 


• DAC constraint on hidden layer: 


• Recall  such that  and ; 


• Under mild regularity conditions: ;  is zero-mean and subgaussian;  admits absolutely continuous distribution


• Conditioned on  and random augmentations  such that , with probability  over 

P(x, y) y = h*(x) + ϵ ϵ ∼ 𝒩(0,σ2) h*(x) = max (x⊤B*,0) w* w* ∈ ℝq B* = [b*1 , ⋯, b*q ] ∈ ℝd×q

∥w*∥1 ≤ Cw ∥b*j ∥2 = 1 ∀ j ∈ [q]

ℋ = {max(⋅⊤B,0)w ∣ B = [b1, ⋯, bq], ∥bj∥2 = 1 ∀ j ∈ [q], ∥w∥1 ≤ Cw} ∋ h*

max (𝒜(X)B,0) = max (MXB,0)

Δ = 𝒜(X) − MX ∈ ℝn×d Δθ* = 0 daug ≜ rank(Δ) P⊥
Δ = Id − Δ†Δ

αn ≥ 3daug P(x) Δ

X ∼ P(x)n Δ
1
n

n

∑
i=1

∥P⊥
Δxi∥2

2 ≤ CN ≥ 1 − δ P(y ∣ x)

L ( ̂θ DAC) − L (θ*) ≲ σCw ( CN

n
+ CN

log(1 − δ)
n ) L ( ̂θ DA−ERM) − L (θ*) ≲ σCw max

d − daug

n
,

d
(1 + α)n

• Randomness in : with a sufficiently large ,  with high probabilityX ∼ P(x)n n CN ≤ d − daug



Adaptively Weighted Data Augmentation 
Consistency Regularization for 

Distributionally Robust Optimization under 
Concept Shift 
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Based on joint work with: Yuege Xie, Rachel Ward


Dong Y, Xie Y, Ward R. AdaWAC: Adaptively Weighted Augmentation Consistency Regularization for Volumetric 
Medical Image Segmentation. arXiv preprint arXiv:2210.01891. 2022 Oct 4.



Information Imbalance in Medical Image Segmentation
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Training 
steps 

t ∈ [T ]

Training 
steps 

t ∈ [T ]

 depending on ℓCE(x, y) P(y ∣ x)

 depending only on ℓAC(x) P(x)

• Input image: 


• Segmentation label: 


• Ground truth distribution 


• Information imbalance:  


•  with disjoint supports 


• : label-sparse distribution


• : label-dense distribution


•  uniform for all 


• Concept shift: 

x ∈ 𝒳 ⊆ ℝd

y ∈ [K]d

Pξ : 𝒳 × 𝒴 → [0,1]

Pξ = ξP0 + (1 − ξ)P1

P0, P1 𝒳 = 𝒳0 ∪ 𝒳1

P0

P1

P0(x) = P1(x) x ∈ 𝒳

P0(y ∣ x) ≠ P1(y ∣ x)

P0 P0P1

How to improve segmentation 
accuracy under such concept shift?



Concept Shift: Label-sparse v.s. Label-dense Samples
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• Data augmentation: ;  is a distribution over mild random augmentations (i.e., rotation & flip)


• Class of segmentation functions: 


• Ground truth , Banach space 


• Supervised cross-entropy loss: 


• Unsupervised consistency regularization: 

Ai,j ∼ 𝒜2n ∀ i ∈ [n], j ∈ [2] 𝒜

ℱ = {fθ = ψθ
decoder

∘ ϕθ
encoder

∣ θ ∈ ℱθ, ϕθ : 𝒳 → 𝒵 ⊆ ℝq, ψθ : 𝒵 → ℝd×K}

θ* = ∩ξ∈[0,1] argmin
θ∈ℱθ

𝔼Pξ [ℓCE(θ; (x, y))] (ℱθ,∥ ⋅ ∥ℱ)

ℓCE (θ; (x, y)) = −
1
d

d

∑
j=1

K

∑
k=1

𝕀{yj = k} ⋅ log (fθ(x)j,k)
ℓAC (θ; x, A1, A2) = λAC ⋅ ϕθ (A1(x)) − ϕθ (A2(x))

2

Given , let  be a compact and convex neighborhood with pre-trained segmentation 

functions. We say that the label-sparse distribution  and label-dense distribution  are -separated over  if there exist 

 such that, with probability  over : for all ,


      &      

γ > 0 ℱθ*(γ) = {θ ∈ ℱθ ∣ ∥θ − θ*∥ℱ ≤ γ}
P0 P1 n ℱθ*(γ)

ω > 0 ≥ 1 − Ω (n1+ω) (x, y, A1, A2) ∼ 𝒳 × 𝒴 × 𝒜 × 𝒜 θ ∈ ℱθ*(γ)

(x, y) ∼ P0 ⇒ ℓCE (θ; (x, y))<ℓAC (θ; x, A1, A2) (x, y) ∼ P1 ⇒ ℓCE (θ; (x, y))>ℓAC (θ; x, A1, A2)

Assumption. ( -separation between label-sparse and label-dense distributions)n



Sample Reweighting & Data Augmentation Consistency Regularization
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• Both sample reweighting and consistency regularization are known for boosting distributional robustness


• Sample reweighting via distributionally robust optimization (DRO)


   


• Data augmentation consistency regularization


min
θ

max
i∈[n]

ℓCE (θ; (xi, yi)) ⇔ min
θ

max
β∈Δn

1
n

n

∑
i=1

βi ⋅ ℓCE (θ; (xi, yi))

min
θ

ℓCE (θ; (xi, yi)) + ℓAC (θ; x, A1, A2)
• A key challenge of incorporating consistency regularization in medical image segmentation


• Dense segmentation labels are sensitive to data augmentations (even the simplest ones like rotation and flip)


• For label-dense samples, severe misspecification is inevitable for data augmentations


• For label-sparse samples, misspecification is mild (if any) thanks to the sparsity of labeled pixels


• How to properly combine DRO and consistency regularization for better distributional robustness?



̂θ , ̂β = argmin
θ∈ℱθ*(γ)

argmax
β∈[0,1]n { ̂LWAC(θ, β) ≜

1
n

n

∑
i=1

βi ⋅ ℓCE (θ; (xi, yi)) + (1 − βi) ⋅ ℓAC (θ; xi, Ai,1, Ai,2)}

Weighted Data Augmentation Consistency (WAC) Regularization

37

Assume that  and  are convex and 

continuous in  for all ; recall  is convex and 

compact. If  and  are -separated, there exist  and 

 such that





where  separates label-sparse and label-dense samples: 

ℓCE (θ; (x, y)) ℓAC (θ; x, A1, A2)
θ (x, y, A1, A2) ℱθ*(γ)

P0 P1 n ̂β ∈ {0,1}n

̂θ ∈ argmin
θ∈ℱθ*(γ)

̂LWAC(θ, ̂β )

argmin
θ∈ℱθ*(γ)

̂LWAC(θ, ̂β ) = ̂LWAC( ̂θ , ̂β ) = argmax
β∈[0,1]n

̂LWAC( ̂θ , β)

̂β
̂β i = {0, (xi, yi) ∼ P0

1, (xi, yi) ∼ P1

Proposition. (Separation of  and  at saddle point)P0 P1
P0 P1 P0

̂β i <
1
2

̂β i >
1
2

̂β i <
1
2

Scarce 
labels

 or ?P0 P1

Automatically 
balanced via 

̂β



AdaWAC: Adaptively Weighted Augmentation Consistency Regularization
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1. Initialize weights 


2. For :


1. Sample  uniformly; set , 


2. Update , , 


3. Update 

β(0) = (1/2,⋯,1/2) ∈ [0,1]n

t = 0,⋯, T

it ∼ [n] b ← [β(t−1)
it

,1 − β(t−1)
it ] β(t) ← β(t−1)

b1 ← b1 ⋅ exp (ηβ ⋅ ℓCE (θ(t−1); (xit, yit))) b2 ← b2 ⋅ exp (ηβ ⋅ ℓAC (θ(t−1); xit, Ait,1, Ait,2)) β(t)
it

←
b1

∥b∥1

θ(t) ← θ(t−1) − ηθ ⋅ (β(t)
it

⋅ ∇θℓCE (θ(t−1); (xit, yit)) + (1 − β(t)
it ) ⋅ ∇θℓAC (θ(t−1); xit, Ait,1, Ait,2))

If there exist  such that  , ,  and 

, then with 


Cθ, Cβ > 0 ∀ θ ∈ ℱθ*(γ) β ∈ [0,1]n 1
n

n

∑
i=1

max {ℓCE (θ; (xi, yi)), ℓAC (θ; xi, Ai,1, Ai,2)}
2

≤ C2
β

1
n

n

∑
i=1

βi ⋅ ∇θℓCE (θ; (xi, yi)) + (1 − βi) ⋅ ∇θℓAC (θ; xi, Ai,1, Ai,2)
2

ℱ
≤ C2

θ ηθ = ηβ =
2

5T (γ2C2
θ + 2nC2

β)
𝔼 [ max

β∈[0,1]n
̂LWAC (θT, β) − min

θ∈ℱθ*(γ)
̂LWAC (θ, βT)] ≤ 2 5 (γ2C2

θ + 2nC2
β)/T

Proposition. (Convergence of AdaWAC)

Online mirror descent for saddle point problem


•  via mirror map 


•  via gradient descent 

max
B∈Δn

2

φB(B) =
n

∑
i=1

2

∑
j=1

Bij log (Bij)
min

θ
φθ(θ) = θ − θ*

2
ℱ

https://arxiv.org/pdf/1911.08731.pdf


Sample Efficiency & Distributional Robustness of AdaWAC
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AdaWAC v.s. baseline (ERM + SGD) with TransUNet on Synapse and its subsets

Sample efficiency


• full: original Synapse multi-organ dataset


• half-slice: slices with even indices in each case 


• half-vol: 9 cases sampled uniformly from the total 18 
training volumes

Distributional robustness


• half-sparse: the first half of slices in each volume, 
most of which are label-sparse

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789


Comparison with Hard-thresholding algorithms
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• trim-train learns only from slices with at least one non-background pixel and trims the rest 


• trim-ratio ranks the cross-entropy loss  in each iteration (mini-batch) and trims samples with the 

lowest  (i.e., label-sparse) at a fixed ratio — the ratio of all-background slices in the full training set 

( ), updating only those samples with the higher  (i.e., label-dense)


• pseudo-AdaWAC simulates the sample weights  at the saddle point — learns via  on slices with 

at least one non-background pixel while via  otherwise


• +ACR further incorporates the augmentation consistency regularization directly via 

ℓCE (θ; (x, y))
ℓCE (θ; (x, y))

≈ 0.42 ℓCE (θ; (x, y))
̂β ℓCE (θ; (x, y))

ℓAC (θ; x, A1, A2)
+ℓAC (θ; x, A1, A2)

Comparison to hard-thresholding algorithms (+ consistency regularization) with TransUNet on Synapse

Why do we need adaptive weighting? Can we manually separate label-sparse & label-dense samples?



Ablation Study
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On the influence of consistency regularization


• reweight-only: standard DRO following Sagawa et al, 
2020


• reweight-EM: DRO + entropy maximization proposed 
in Fidon et al, 2021 


• Reweighting alone brings little improvement 
compared to the baseline

On the influence of sample reweighting


• ACR-only: 


• AdaWAC-0.01:  with slow separation


• AdaWAC-1.0:  with (properly) rapid separation


• Proper reweighting brings additional boost

min
θ

ℓCE (θ; (xi, yi)) + ℓAC (θ; x, A1, A2)
ηβ = 0.01

ηβ = 1.0

Ablation study of AdaWAC with TransUNet on Synapse

• Sagawa S, Koh PW, Hashimoto TB, Liang P. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731. 2019 Nov 20.
• Fidon L, Aertsen M, Mufti N, Deprest T, Emam D, Guffens F, Schwartz E, Ebner M, Prayer D, Kasprian G, David AL. Distributionally robust segmentation of abnormal fetal brain 3D MRI. InUncertainty for Safe Utilization of 
Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis: 3rd International Workshop, UNSURE 2021, and 6th International Workshop, PIPPI 2021, Held in Conjunction with 
MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings 3 2021 (pp. 263-273). Springer International Publishing.

https://arxiv.org/pdf/1911.08731.pdf
https://arxiv.org/pdf/1911.08731.pdf
https://arxiv.org/pdf/2108.04175.pdf
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Efficiency of Sketching
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Runtime of Gaussian / SRFT / sparse sign embedding  on dense matrices of size Γ ∈ ℂl×m m × n

• Runtime: Sparse sign  < SRFT 
 < Gaussian 


• Efficiency of sketching is important 
(only) when  is sufficiently large


• Similar low-rank approximation errors 
 in practice


• We focus on Gaussian embedding 
for simplicity & consistency

O(mnζ)
O(mn log l) O(mnl)

l

∥A − AX†X∥


