Efficient Bounds and Estimates for Canonical Angles in Randomized Subspace Approximations

Yijun Dong*, Per-Gunnar Martinsson*, Yuji Nakatsukasa[†]

*Oden Institute, University of Texas at Austin [†]Mathematical Institute, University of Oxford

Aug 24, 2023, ICIAM 2023, Tokyo, Japan

This presentation is based on the following arXiv paper: Dong, Yijun, Per-Gunnar Martinsson, and Yuji Nakatsukasa. "Efficient Bounds and Estimates for Canonical Angles in Randomized Subspace Approximations." arXiv preprint arXiv:2211.04676 (2022).

Outline

Problem setup: randomized subspace approximations & canonical angles

- in practice

Prior probabilistic bounds/estimates & posterior residual-based guarantees

Numerical comparisons: effectiveness of canonical angle bounds & estimates

Leading Singular Subspaces

Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, $1 \le k \le r = \operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$\mathbf{A}_{k} = \mathbf{U}_{k} \quad \mathbf{\Sigma}_{k} \quad \mathbf{V}_{k}^{*}$$
$$m \times k \quad k \times k \quad k \times n$$

- Maximum-k singular values: $\Sigma_k = \text{diag}(\sigma_1, ..., \sigma_k)$
- Leading-k singular subspaces: $\mathbf{U}_k^* \mathbf{U}_k = \mathbf{V}_k^* \mathbf{V}_k = \mathbf{I}_k$
- Eckart–Young–Mirsky theorem

$$\mathbf{A}_{k} = \min_{\operatorname{rank}(\widehat{\mathbf{A}}) \le k} \|\mathbf{A} - \widehat{\mathbf{A}}\|_{F}$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
 - Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Leading Singular Subspaces

Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, $1 \le k \le r = \operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$\mathbf{A}_{k} = \mathbf{U}_{k} \quad \mathbf{\Sigma}_{k} \quad \mathbf{V}_{k}^{*}$$
$$m \times k \quad k \times k \quad k \times n$$

- Maximum-k singular values: $\Sigma_k = \text{diag}(\sigma_1, ..., \sigma_k)$
- Leading-k singular subspaces: $\mathbf{U}_k^*\mathbf{U}_k = \mathbf{V}_k^*\mathbf{V}_k = \mathbf{I}_k$
- Eckart–Young–Mirsky theorem

$$\mathbf{A}_{k} = \min_{\operatorname{rank}(\widehat{\mathbf{A}}) \le k} \|\mathbf{A} - \widehat{\mathbf{A}}\|_{F}$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
 - Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Spectral clustering on the dimension-6 leading singular subspace of a mini-MNIST dataset (8×8 images of digits 0-5)

Leading Singular Subspaces

Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, $1 \le k \le r = \operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$\mathbf{A}_{k} = \mathbf{U}_{k} \quad \mathbf{\Sigma}_{k} \quad \mathbf{V}_{k}^{*}$$
$$m \times k \quad k \times k \quad k \times n$$

- Maximum-k singular values: $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k)$
- Leading-k singular subspaces: $\mathbf{U}_k^* \mathbf{U}_k = \mathbf{V}_k^* \mathbf{V}_k = \mathbf{I}_k$
- Eckart–Young–Mirsky theorem

$$\mathbf{A}_{k} = \min_{\operatorname{rank}(\widehat{\mathbf{A}}) \le k} \|\mathbf{A} - \widehat{\mathbf{A}}\|_{F}$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
 - Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Randomized Subspace Approximations with Sketching

- Inputs: $A \in \mathbb{C}^{m \times n}$, sample size l with $k < l \leq r = \operatorname{rank}(A)$ (e.g., $l = 2k \ll r$), number of power iterations $q \in \{0, 1, 2, \dots\}$ ($q \le 2$ usually)
- <u>Outputs</u>: RSVD(A, l, q) = $(\widehat{\mathbf{U}}_{l} \in \mathbb{C}^{m \times l}, \widehat{\mathbf{\Sigma}}_{l} \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_{l})$
- **Randomized linear embedding** (Johnson-Lindenstrauss transforms, etc.)
 - Draw $\Omega \sim P(\mathbb{C}^{n \times l})$ with i.i.d. entries $\Omega_{ii} \sim \mathcal{N}(0, l^{-1})$
- 2. **Sketching** with power iterations
 - Randomized **power** iterations (unstable): $\mathbf{X}^{(q)} = (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\mathbf{\Omega}$

3.
$$\mathbf{Q}_X = \operatorname{ortho}(\mathbf{X}^{(q)})$$

4.
$$[\widetilde{\mathbf{U}}_l, \widehat{\mathbf{\Sigma}}_l, \widehat{\mathbf{V}}_l] = \operatorname{svd}(\mathbf{A}^*\mathbf{Q}_X)$$

5.
$$\widehat{\mathbf{U}}_l = \mathbf{Q}_X \widetilde{\mathbf{U}}_l$$

$$\widehat{\mathbf{V}}_{l} \in \mathbb{C}^{n \times l}$$
) such that $\widehat{\mathbf{A}}_{l} = \widehat{\mathbf{U}}_{l} \widehat{\mathbf{\Sigma}}_{l} \widehat{\mathbf{V}}_{l}^{*} \approx \mathbf{A}$

) such that
$$\mathbb{E}[\mathbf{\Omega}\mathbf{\Omega}^*] = \mathbf{I}_n$$

• Randomized subspace iterations (stable): $\mathbf{X}^{(0)} = \operatorname{ortho}(\mathbf{A}\Omega), \ \mathbf{X}^{(i)} = \operatorname{ortho}(\mathbf{A} \operatorname{ortho}(\mathbf{A} * \mathbf{X}^{(i-1)})) \ \forall i \in [q]$

Randomized Subspace Approximations with Sketching

- Inputs: $A \in \mathbb{C}^{m \times n}$, sample size l with $k < l \leq r = \operatorname{rank}(A)$ (e.g., $l = 2k \ll r$), number of power iterations $q \in \{0, 1, 2, \dots\}$ ($q \le 2$ usually)
- <u>Outputs</u>: RSVD(A, l, q) = $(\widehat{\mathbf{U}}_{l} \in \mathbb{C}^{m \times l}, \widehat{\mathbf{\Sigma}}_{l} \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_{l})$
- **Randomized linear embedding** (Johnson-Lindenstrauss transforms, etc.)
 - Draw $\mathbf{\Omega} \sim P(\mathbb{C}^{n \times l})$ with i.i.d. entries $\Omega_{ii} \sim \mathcal{N}(0, l^{-1})$
- 2. **Sketching** with power iterations
 - Randomized **power** iterations (unstable): $\mathbf{X}^{(q)} = (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\mathbf{\Omega}$

3.
$$\mathbf{Q}_X = \operatorname{ortho}(\mathbf{X}^{(q)})$$

4.
$$[\widetilde{\mathbf{U}}_l, \widehat{\mathbf{\Sigma}}_l, \widehat{\mathbf{V}}_l] = \operatorname{svd}(\mathbf{A}^*\mathbf{Q}_X)$$

5.
$$\widehat{\mathbf{U}}_l = \mathbf{Q}_X \widetilde{\mathbf{U}}_l$$

$$\widehat{\mathbf{V}}_{l} \in \mathbb{C}^{n \times l}$$
) such that $\widehat{\mathbf{A}}_{l} = \widehat{\mathbf{U}}_{l} \widehat{\mathbf{\Sigma}}_{l} \widehat{\mathbf{V}}_{l}^{*} \approx \mathbf{A}$

) such that
$$\mathbb{E}[\mathbf{\Omega}\mathbf{\Omega}^*] = \mathbf{I}_n$$

Isotropic embedding

• Randomized subspace iterations (stable): $\mathbf{X}^{(0)} = \operatorname{ortho}(\mathbf{A}\Omega), \ \mathbf{X}^{(i)} = \operatorname{ortho}(\mathbf{A} \operatorname{ortho}(\mathbf{A} * \mathbf{X}^{(i-1)})) \ \forall i \in [q]$

Randomized Subspace Approximations with Sketching

- Inputs: $A \in \mathbb{C}^{m \times n}$, sample size l with $k < l \leq r = \operatorname{rank}(A)$ (e.g., $l = 2k \ll r$), number of power iterations $q \in \{0, 1, 2, \dots\}$ ($q \le 2$ usually)
- <u>Outputs</u>: RSVD(A, l, q) = $(\widehat{\mathbf{U}}_{l} \in \mathbb{C}^{m \times l}, \widehat{\mathbf{\Sigma}}_{l} \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_{l})$
- **Randomized linear embedding** (Johnson-Lindenstrauss transforms, etc.)
 - Draw $\Omega \sim P(\mathbb{C}^{n \times l})$ with i.i.d. entries $\Omega_{ii} \sim \mathcal{N}(0, l^{-1})$ such that $\mathbb{E}[\Omega \Omega^*] = \mathbf{I}_n$
- 2. **Sketching** with power iterations
 - Randomized **power** iterations (unstable): $\mathbf{X}^{(q)} = (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\mathbf{\Omega}$

3.
$$\mathbf{Q}_{X} = \operatorname{ortho}(\mathbf{X}^{(q)})$$
 Key observation
4. $[\widetilde{\mathbf{U}}_{l}, \widehat{\mathbf{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}] = \operatorname{svd}(\mathbf{A}^{*}\mathbf{Q}_{X})$ • For any $q \in \mathbf{U}_{l} = \mathbf{Q}_{X}\widetilde{\mathbf{U}}_{l}$ • Compared to

$$\widehat{\mathbf{V}}_{l} \in \mathbb{C}^{n \times l}$$
) such that $\widehat{\mathbf{A}}_{l} = \widehat{\mathbf{U}}_{l} \widehat{\mathbf{\Sigma}}_{l} \widehat{\mathbf{V}}_{l}^{*} \approx \mathbf{A}$

Isotropic embedding

• Randomized subspace iterations (stable): $\mathbf{X}^{(0)} = \operatorname{ortho}(\mathbf{A}\Omega), \ \mathbf{X}^{(i)} = \operatorname{ortho}(\mathbf{A} \operatorname{ortho}(\mathbf{A} * \mathbf{X}^{(i-1)})) \ \forall i \in [q]$

ons: with ${f \Sigma}$ being the spectrum of ${f A}$

N, q power iterations correspond to Σ^{2q+1}

to $\widehat{\mathbf{U}}_{l}$, $\widehat{\mathbf{V}}_{l}$ enjoys half more power iterations (i.e., $\mathbf{\Sigma}^{2q+2}$)

Canonical Angles: Alignment between Subspaces

- Canonical angles $\angle(\mathcal{U}, \mathcal{V}) = (\theta_1, \dots, \theta_k)$ measure the alignment between two subspaces $\mathcal{U}, \mathcal{V} \subseteq \mathbb{C}^d$ with dimensions $k, l \leq d$ respectively (k < l w.l.o.g), e.g.,
 - True leading singular subspace: $\mathcal{U} = \operatorname{range}(\mathbf{U}_k)$ \bullet
 - Approximated leading singular subspace: $\mathcal{V} = ra$
- Left & right canonical angles of $RSVD(\mathbf{A}, l, q) = (\mathbf{\hat{l}})$ $\sin \angle_i (\mathbf{U}_k, \widehat{\mathbf{U}}_l) = \sigma_{k-i+1} ((\mathbf{I}_m - \widehat{\mathbf{U}}_l \widehat{\mathbf{U}}_l))$ $\sin \angle_i (\mathbf{V}_k, \widehat{\mathbf{V}}_l) = \sigma_{k-i+1} ((\mathbf{I}_m - \widehat{\mathbf{V}}_l \widehat{\mathbf{V}}_i))$

ange
$$(\widehat{\mathbf{U}}_{l})$$

 $\widehat{\mathbf{U}}_{l}, \widehat{\mathbf{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}): \forall i \in [k],$
 $(\mathbf{V}_{k}), \quad \cos \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) = \sigma_{i} (\widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{k})$
 $(\mathbf{V}_{k}), \quad \cos \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) = \sigma_{i} (\widehat{\mathbf{V}}_{l}^{*} \mathbf{V}_{k})$

Canonical Angles: Alignment between Subspaces

- Canonical angles $\angle(\mathcal{U}, \mathcal{V}) = (\theta_1, \dots, \theta_k)$ measure the alignment between two subspaces $\mathcal{U}, \mathcal{V} \subseteq \mathbb{C}^d$ with dimensions $k, l \leq d$ respectively (k < l w.l.o.g), e.g.,
 - True leading singular subspace: $\mathcal{U} = \operatorname{range}(\mathbf{U}_k)$
 - Approximated leading singular subspace: $\mathcal{V} = \mathbf{r}$
- Left & right canonical angles of $RSVD(\mathbf{A}, l, q) = ($ $\sin \angle_i (\mathbf{U}_k, \widehat{\mathbf{U}}_l) = \sigma_{k-i+1} ((\mathbf{I}_m - \widehat{\mathbf{U}}_l \widehat{\mathbf{U}}_l))$ $\sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) = \sigma_{k-i+1} ((\mathbf{I}_{m} - \widehat{\mathbf{V}}_{l} \widehat{\mathbf{V}}_{l}))$

- Prior guarantees are probabilistic, with randomness from $\Omega \sim P(\mathbb{C}^{n \times l})$

ange
$$(\widehat{\mathbf{U}}_{l})$$

 $\widehat{\mathbf{U}}_{l}, \widehat{\mathbf{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}): \forall i \in [k],$
 $(\mathbf{W}_{l}) = \sigma_{i}(\widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{k})$
 $(\mathbf{W}_{l}) = \sigma_{i}(\widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{k})$
 $(\mathbf{W}_{l}) = \sigma_{i}(\widehat{\mathbf{V}}_{l}^{*} \mathbf{V}_{k})$

Prior v.s. posterior guarantees: computed without v.s. with the outputs $(\widehat{\mathbf{U}}_l, \widehat{\mathbf{\Sigma}}_l, \widehat{\mathbf{V}}_l)$

Posterior guarantees are deterministic with given $(\widehat{\mathbf{U}}_{l}, \widehat{\mathbf{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l})$

Outline

- Prior probabilistic bounds/estimates & posterior residual-based guarantees
- in practice

Problem setup: randomized subspace approximations & canonical angles

Numerical comparisons: effectiveness of canonical angle bounds & estimates

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq ($

- Notice that $1 < \eta \leq r k$ and usually $r k \gg l$. $\eta = \Omega(l)$ refers to a realistic case with non-negligible.
- With high probability (at least $1 e^{-\Theta(k)} e^{-\Theta(l)}$), there $\forall i \in [k]$

$$\begin{split} \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)\right)^{-\frac{1}{2}} &\leq \operatorname{sin} \angle_i (\mathbf{U}_k, \, \widehat{\mathbf{U}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)^{-\frac{1}{2}} \\ \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)\right)^{-\frac{1}{2}} \leq \operatorname{sin} \angle_i (\mathbf{V}_k, \, \widehat{\mathbf{V}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)^{-\frac{1}{2}} \end{split}$$

• In practice, taking $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ is sufficient for upper bounds when $l \ge 1.6k$ and $q \le 10$

$$\left(\sum_{j=k+1}^{\prime} \sigma_j^{4q+4}\right)^2 / \left(\sum_{j=k+1}^{\prime} \sigma_j^{2(4q+4)} = \Omega(l); \text{ oversampling } l = \Omega(k)\right)$$

e exist
$$\epsilon_1=\Theta(\sqrt{k/l}), \epsilon_2=\Theta(\sqrt{l/\eta}), \epsilon_1, \epsilon_2\in (0,1)$$
 such that,

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq ($

- Notice that $1 < \eta \leq r k$ and usually $r k \gg l$. $\eta = \Omega(l)$ refers to a realistic case with non-negligible.
- With high probability (at least $1 e^{-\Theta(k)} e^{-\Theta(l)}$), there $\forall i \in [k]$

$$\begin{split} \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)\right)^{-\frac{1}{2}} &\leq \operatorname{sin} \angle_i (\mathbf{U}_k, \, \widehat{\mathbf{U}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)^{-\frac{1}{2}} \\ \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)\right)^{-\frac{1}{2}} \leq \operatorname{sin} \angle_i (\mathbf{V}_k, \, \widehat{\mathbf{V}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)^{-\frac{1}{2}} \end{split}$$

• In practice, taking $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ is sufficient for upper bounds when $l \ge 1.6k$ and $q \le 10$

$$\left(\sum_{j=k+1}^{\prime} \sigma_j^{4q+4}\right)^2 / \left(\sum_{j=k+1}^{\prime} \sigma_j^{2(4q+4)} = \Omega(l); \text{ oversampling } l = \Omega(k)\right)$$

e exist
$$\epsilon_1=\Theta(\sqrt{k/l}), \epsilon_2=\Theta(\sqrt{l/\eta}), \epsilon_1, \epsilon_2\in (0,1)$$
 such that,

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

- Notice that $1 < \eta \leq r k$ and usually $r k \gg l$. $\eta = \Omega(l)$ refers to a realistic case with non-negligible
- With high probability (at least $1 e^{-\Theta(k)} e^{-\Theta(l)}$), there $\forall i \in [k]$

$$\begin{split} \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)\right)^{-\frac{1}{2}} &\leq \operatorname{sin} \angle_i (\mathbf{U}_k, \, \widehat{\mathbf{U}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)^{-\frac{1}{2}} \\ \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)\right)^{-\frac{1}{2}} \leq \operatorname{sin} \angle_i (\mathbf{V}_k, \, \widehat{\mathbf{V}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)^{-\frac{1}{2}} \end{split}$$

• In practice, taking $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ is sufficient for upper bounds when $l \ge 1.6k$ and $q \le 10$

• With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq \left(\sum_{j=1}^{r} \sigma_{j}^{4q+4}\right)^{2} / \sum_{j=1}^{r} \sigma_{j}^{2(4q+4)} = \Omega(l)$; oversampling $l = \Omega(k)$ i=k+1i = k + 1

e exist
$$\epsilon_1 = \Theta(\sqrt{k/l}), \epsilon_2 = \Theta(\sqrt{l/\eta}), \epsilon_1, \epsilon_2 \in (0,1)$$
 such that,

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq$

- Notice that $1 < \eta \leq r k$ and usually $r k \gg l$. $\eta = \Omega(l)$ refers to a realistic case with non-negligible.
- With high probability (at least $1 e^{-\Theta(k)} e^{-\Theta(l)}$), there $\forall i \in [k]$

$$\begin{split} \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)\right)^{-\frac{1}{2}} &\leq \operatorname{sin} \angle_i (\mathbf{U}_k, \, \widehat{\mathbf{U}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)^{-\frac{1}{2}} \\ \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)\right)^{-\frac{1}{2}} \leq \operatorname{sin} \angle_i (\mathbf{V}_k, \, \widehat{\mathbf{V}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)^{-\frac{1}{2}} \end{split}$$

• In practice, taking $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ is sufficient for upper bounds when $l \ge 1.6k$ and $q \le 10$

$$\left(\sum_{j=k+1}^{\prime} \sigma_j^{4q+4}\right)^2 / \sum_{j=k+1}^{\prime} \sigma_j^{2(4q+4)} = \Omega(l); \text{ oversampling } l = \Omega(k)$$

e exist
$$\epsilon_1 = \Theta(\sqrt{k/l}), \epsilon_2 = \Theta(\sqrt{l/\eta}), \epsilon_1, \epsilon_2 \in (0,1)$$
 such that,

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq$

- Notice that $1 < \eta \leq r k$ and usually $r k \gg l$. $\eta = \Omega(l)$ refers to a realistic case with non-negligible.
- With high probability (at least $1 e^{-\Theta(k)} e^{-\Theta(l)}$), there $\forall i \in [k]$

$$\left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)\right)^{-\frac{1}{2}} \leq \operatorname{sin} \angle_i (\mathbf{U}_k, \, \widehat{\mathbf{U}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+2}}{\sum_{j=k+1}^r \sigma_j^{4q+2}}\right)^{-\frac{1}{2}} \\ \left(1 + O_{\epsilon_1, \epsilon_2} \left(\frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)\right)^{-\frac{1}{2}} \leq \operatorname{sin} \angle_i (\mathbf{V}_k, \, \widehat{\mathbf{V}}_l) \leq \left(1 + \frac{1 - \epsilon_1}{1 + \epsilon_2} \cdot \frac{l \cdot \sigma_i^{4q+4}}{\sum_{j=k+1}^r \sigma_j^{4q+4}}\right)^{-\frac{1}{2}}$$

• In practice, taking $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ is sufficient for upper bounds when $l \ge 1.6k$ and $q \le 10$

$$\left(\sum_{j=k+1}^{\prime} \sigma_j^{4q+4}\right)^2 / \sum_{j=k+1}^{\prime} \sigma_j^{2(4q+4)} = \Omega(l); \text{ oversampling } l = \Omega(k)$$

e exist
$$\epsilon_1 = \Theta(\sqrt{k/l}), \epsilon_2 = \Theta(\sqrt{l/\eta}), \epsilon_1, \epsilon_2 \in (0,1)$$
 such that,

Comparison with Existing Prior Probabilistic Guarantees

- Given $\Omega \sim P(\mathbb{C}^{n \times l})$, let $\Omega_1 \triangleq \mathbf{V}_k^* \Omega$ and $\Omega_2 \triangleq \mathbf{V}_{r \setminus k}^* \Omega$. Then, $\Omega_1 \sim P(\mathbb{C}^{k \times l})$ and $\Omega_2 \sim P(\mathbb{C}^{(r-k) \times l})$
- Prior work (Saibaba, 2018)¹:

$$\sin \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+2}}{\sigma_{k+1}^{4q+2} \| \mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger} \|_{2}^{2}} \right)^{-\frac{1}{2}}, \quad \sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+4}}{\sigma_{k+1}^{4q+4} \| \mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger} \|_{2}^{2}} \right)^{-\frac{1}{2}}$$

where for $l \ge k+2$, given any $\delta \in (0,1)$, with probability at least $1 - \delta$,

$$\|\boldsymbol{\Omega}_{2}\boldsymbol{\Omega}_{1}^{\dagger}\|_{2} \leq \frac{e\sqrt{l}}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \Omega\left(\sqrt{\frac{n-k}{l}}\right)$$

- Theorem 1 is space-agnostic since the randomized linear embedding $\Omega \sim P(\mathbb{C}^{n \times l})$ is isotropic
 - Only depends on the spectrum $\{\sigma_i\}_{i=1}^r$, but not on the singular subspaces $(\mathbf{U}_k, \mathbf{U}_{r \setminus k})$ or $(\mathbf{V}_k, \mathbf{V}_{r \setminus k})$
 - In proof, we took an integrated view on the concentration of ${old \Sigma}_{r\setminus k}^{2q+1}{old \Omega}_2$
- Saibaba, Arvind K. "Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms." SIAM Journal on Matrix Analysis and Applications 40.1 (2019): 23-48.

Comparison with Existing Prior Probabilistic Guarantees

- Given $\Omega \sim P(\mathbb{C}^{n \times l})$, let $\Omega_1 \triangleq \mathbf{V}_k^* \Omega$ and $\Omega_2 \triangleq \mathbf{V}_{r \setminus k}^* \Omega$. Then, $\Omega_1 \sim P(\mathbb{C}^{k \times l})$ and $\Omega_2 \sim P(\mathbb{C}^{(r-k) \times l})$
- Prior work (Saibaba, 2018)¹:

$$\sin \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+2}}{\sigma_{k+1}^{4q+2} \| \mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger} \|_{2}^{2}} \right)^{-\frac{1}{2}}, \quad \sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+4}}{\sigma_{k+1}^{4q+4} \| \mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger} \|_{2}^{2}} \right)^{-\frac{1}{2}}$$

where for $l \ge k+2$, given any $\delta \in (0,1)$, with probability at least $1 - \delta$,

$$\|\boldsymbol{\Omega}_{2}\boldsymbol{\Omega}_{1}^{\dagger}\|_{2} \leq \frac{e\sqrt{l}}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \Omega\left(\sqrt{\frac{n-k}{l}}\right)$$

- Theorem 1 is space-agnostic since the randomized linear embedding $\Omega \sim P(\mathbb{C}^{n \times l})$ is isotropic
 - Only depends on the spectrum $\{\sigma_i\}_{i=1}^r$, but not on the singular subspaces $(\mathbf{U}_k, \mathbf{U}_{r \setminus k})$ or $(\mathbf{V}_k, \mathbf{V}_{r \setminus k})$
 - In proof, we took an integrated view on the concentration of ${old \Sigma}_{r\setminus k}^{2q+1}{old \Omega}_2$
- Saibaba, Arvind K. "Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms." SIAM Journal on Matrix Analysis and Applications 40.1 (2019): 23-48.

Isotropic embedding: $\Omega_{1'}$

 Ω_2 are agnostic of $\mathbf{V}_{k'}\mathbf{V}_{r\setminus k}$

Comparison with Existing Prior Probabilistic Guarantees

- Given $\Omega \sim P(\mathbb{C}^{n \times l})$, let $\Omega_1 \triangleq \mathbf{V}_k^* \Omega$ and $\Omega_2 \triangleq \mathbf{V}_{r \setminus k}^* \Omega$. The
- Prior work (Saibaba, 2018) 1 :

$$\sin \angle_{i} (\mathbf{U}_{k}, \, \widehat{\mathbf{U}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+2}}{\sigma_{k+1}^{4q+2} \|\mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger}\|_{2}^{2}}\right)^{-\frac{1}{2}}, \quad \sin \angle_{i} (\mathbf{V}_{k}, \, \widehat{\mathbf{V}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+4}}{\sigma_{k+1}^{4q+4} \|\mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger}\|_{2}^{2}}\right)^{-\frac{1}{2}}$$

$$\operatorname{ere \ for \ } l \geq k+2, \text{ given any } \delta \in (0,1), \text{ with probability at least } 1-\delta, \\ \|\mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger}\|_{2} \leq \frac{e\sqrt{l}}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \mathbf{\Omega}\left(\sqrt{\frac{n-k}{l}}\right)$$

$$\operatorname{ere \ for \ } l \geq k+2, \text{ given any } \delta \in (0,1), \text{ with probability at least } 1-\delta, \\ \operatorname{ere \ } l = \frac{1}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \mathbf{\Omega}\left(\sqrt{\frac{n-k}{l}}\right)$$

$$\operatorname{ere \ } l = \frac{1}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \mathbf{\Omega}\left(\sqrt{\frac{n-k}{l}}\right)$$

whe

$$\begin{split} _{i}(\mathbf{U}_{k},\,\widehat{\mathbf{U}}_{l}) &\leq \left(1 + \frac{\sigma_{i}^{4q+2}}{\sigma_{k+1}^{4q+2} \|\mathbf{\Omega}_{2}\mathbf{\Omega}_{1}^{\dagger}\|_{2}^{2}}\right)^{-\frac{1}{2}}, \quad \operatorname{sin} \angle_{i}(\mathbf{V}_{k},\,\widehat{\mathbf{V}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+4}}{\sigma_{k+1}^{4q+4} \|\mathbf{\Omega}_{2}\mathbf{\Omega}_{1}^{\dagger}\|_{2}^{2}}\right)^{-\frac{1}{2}} \\ \text{From } l \geq k+2, \text{ given any } \delta \in (0,1), \text{ with probability at least } 1 - \delta, \\ \|\mathbf{\Omega}_{2}\mathbf{\Omega}_{1}^{\dagger}\|_{2} \leq \frac{e\sqrt{l}}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \Omega\left(\sqrt{\frac{n-k}{l}}\right) \\ = \Omega\left(\sqrt{\frac{n-k}{l}}\right) \quad \text{where the smaller values to the tighter upper boundary } \end{split}$$

- Theorem 1 is space-agnostic since the randomized linear embedding $\Omega \sim P(\mathbb{C}^{n \times l})$ is isotropic
 - Only depends on the spectrum $\{\sigma_i\}_{i=1}^r$, but not on the singular subspaces $(\mathbf{U}_k, \mathbf{U}_{r \setminus k})$ or $(\mathbf{V}_k, \mathbf{V}_{r \setminus k})$
 - In proof, we took an integrated view on the concentration of ${f \Sigma}_{rackslash k}^{2q+1}{f \Omega}_2$
- Saibaba, Arvind K. "Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms." SIAM Journal on Matrix Analysis and Applications 40.1 (2019): 23-48.

hen,
$$\Omega_1 \sim P(\mathbb{C}^{k imes l})$$
 and $\Omega_2 \sim P(\mathbb{C}^{(r-k) imes l})$

otropic embedding: Ω_{1} ,

 $\mathbf{\Omega}_2$ are agnostic of $\mathbf{V}_{k'}\mathbf{V}_{r\setminus k}$

Unbiased Space-agnostic Estimates

$$\sin \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \approx \alpha_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(1 + \sigma_{i}^{2} \left(\boldsymbol{\Sigma}_{k}^{2q+1} \boldsymbol{\Omega}_{1}^{(j)} \right) \right)$$
$$\sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \approx \beta_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(1 + \sigma_{i}^{2} \left(\boldsymbol{\Sigma}_{k}^{2q+2} \boldsymbol{\Omega}_{1}^{(j)} \right) \right)$$

- **Low variance** in practice (i.e., negligible when $N \geq 3$)
- **Can be** <u>computed</u> efficiently with $O(Nrl^2)$ operations (for a given spectrum Σ)
- For any $k \leq l \leq r$, without further assumptions on the sample size (e.g., $\eta = \Omega(l), l = \Omega(k)$)

• Draw independent Gaussian random matrices $\left\{ \Omega_1^{(j)} \sim P(\mathbb{C}^{k \times l}) \middle| j \in [N] \right\}$ and $\left\{ \Omega_2^{(j)} \sim P(\mathbb{C}^{(r-k) \times l}) \middle| j \in [N] \right\}$ • Unbiased canonical angle estimates $\alpha_i = \mathbb{E}\left[\sin \angle_i (\mathbf{U}_k, \widehat{\mathbf{U}}_l)\right], \ \beta_i = \mathbb{E}\left[\sin \angle_i (\mathbf{V}_k, \widehat{\mathbf{V}}_l)\right] \ \forall \ i \in [k]$ such that $\left(\boldsymbol{\Sigma}_{r\backslash k}^{2q+1}\boldsymbol{\Omega}_{2}^{(j)}\right)^{\dagger}\right)^{-\overline{2}}$ $\left(\boldsymbol{\Sigma}_{r\backslash k}^{2q+2}\boldsymbol{\Omega}_{2}^{(j)}\right)^{\dagger}\right)^{-\overline{2}}$

Unbiased Space-agnostic Estimates

Draw independent Gaussian random matrices
$$\left\{ \Omega_{1}^{(j)} \sim P(\mathbb{C}^{k \times l}) \middle| j \in [N] \right\}$$
 and $\left\{ \Omega_{2}^{(j)} \sim P(\mathbb{C}^{(r-k) \times l}) \middle| j \in [N] \right\}$
Unbiased canonical angle estimates $\alpha_{i} = \mathbb{E} \left[\sin \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \right], \beta_{i} = \mathbb{E} \left[\sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \right] \quad \forall i \in [k]$ such that
 $\sin \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \approx \alpha_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(1 + \sigma_{i}^{2} \left(\sum_{k=1}^{2q+1} \Omega_{1}^{(j)} \left(\sum_{r \setminus k}^{2q+1} \Omega_{2}^{(j)} \right)^{\dagger} \right)^{-\frac{1}{2}}$
 $\sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \approx \beta_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(1 + \sigma_{i}^{2} \left(\sum_{k=1}^{2q+2} \Omega_{1}^{(j)} \left(\sum_{r \setminus k}^{2q+2} \Omega_{2}^{(j)} \right)^{\dagger} \right)^{-\frac{1}{2}}$
 $\sin \angle_{i} (\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \approx \beta_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(1 + \sigma_{i}^{2} \left(\sum_{k=1}^{2q+2} \Omega_{1}^{(j)} \left(\sum_{r \setminus k}^{2q+2} \Omega_{2}^{(j)} \right)^{\dagger} \right)^{-\frac{1}{2}}$

- Low variance in practice (i.e., negligible when $N \ge 3$)
- Can be <u>computed</u> efficiently with $O(Nrl^2)$ operations (for a given spectrum Σ)
- For any $k \leq l \leq r$, without further assumptions on the sample size (e.g., $\eta = \Omega(l), l = \Omega(k)$)

Posterior Residual-based Guarantees

Posterior bounds based on full residuals: Theorem 2. (D., Martinsson, Nakatsukasa, 2022)

•
$$\sin \angle_{i} (\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \leq \frac{\sigma_{k-i+1} \left(\left(\mathbf{I}_{m} - \widehat{\mathbf{U}}_{l} \widehat{\mathbf{U}}_{l}^{*} \right) \mathbf{A} \right)}{\sigma_{k}} \wedge \frac{\sigma_{1} \left(\left(\mathbf{I}_{m} - \widehat{\mathbf{U}}_{l} \widehat{\mathbf{U}}_{l}^{*} \right) \mathbf{A} \right)}{\sigma_{i}}$$

- Deterministic and **algorithm-independent** (e.g., holds for any $k \leq l \leq r$, and any embedding Ω)
- Can be <u>approximated</u> with O(mnl) operations
- Posterior bounds based on sub-residuals: Theorem 3 2.

• Let
$$\mathbf{E}_{31} \triangleq \widehat{\mathbf{U}}_{m \setminus l}^* \mathbf{A} \widehat{\mathbf{V}}_{k'} \mathbf{E}_{32} \triangleq \widehat{\mathbf{U}}_{m \setminus l}^* \mathbf{A} \widehat{\mathbf{V}}_{l \setminus k'} \mathbf{E}_{33} \triangleq \widehat{\mathbf{U}}_{m \setminus l}^* \mathbf{A} \widehat{\mathbf{V}}_{n \setminus l'} \Gamma_1 \triangleq \frac{\sigma_k^2 - \|\mathbf{E}_{33}\|_2^2}{\sigma_k}, \Gamma_2 \triangleq \frac{\sigma_k^2 - \|\mathbf{E}_{33}\|_2^2}{\|\mathbf{E}_{33}\|_2}.$$

Assume $\sigma_k > \|\mathbf{E}_{33}\|_2$. Then, for any unitary invariant norm $\|\cdot\|$, $\|\sin\angle(\mathbf{U}_k, \widehat{\mathbf{U}}_l)\| \le \|[\mathbf{E}_{31}, \mathbf{E}_{32}]\|/\Gamma_1$.

- Deterministic and holds for any $k \leq l \leq r$, and any embedding Ω
- Can be <u>approximated</u> with O(mnl) operations

Outline

Numerical comparisons: effectiveness of canonical angle bounds & estimates in practice

Problem setup: randomized subspace approximations & canonical angles

Prior probabilistic bounds/estimates & posterior residual-based guarantees

Space-agnostic bounds & estimates win on MNIST: Polynomial spectral decay

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true (approximated singular values) shade = min/max in Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ N = 3 samples \Rightarrow Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces negligible variance! Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

Space-agnostic bounds & estimates win on MNIST: Polynomial spectral decay

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true approximated singular values Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

shade = min/max in N = 3 samples \Rightarrow negligible variance!

Space-agnostic bounds & estimates win on MNIST: Polynomial spectral decay

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true approximated singular values Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_1 = \sqrt{k/l}, \epsilon_2 = \sqrt{l/(r-k)}$ Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

l = 1.6k $q \in \{5, 10\}$ Black line: true

canonical angles

shade = min/max in N = 3 samples \Rightarrow negligible variance!

How about space-agnostic lower bounds in practice: MNIST

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$

How about space-agnostic lower bounds in practice: MNIST

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true) approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$

$$l = 4l$$
 $q \in \{0,$

When are posterior bounds more effective: Exponential spectral decay + low-error regimes

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true approximated singular values), and true canonical angles

When are posterior bounds more effective: Exponential spectral decay + low-error regimes

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true) approximated singular values), and true canonical angles

When are posterior bounds more effective: Exponential spectral decay + low-error regimes

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true) approximated singular values), and true canonical angles

Thank You!

arXiv: https://arxiv.org/abs/2211.04676

GitHub: <u>https://github.com/dyjdongyijun/</u> **Randomized** Subspace Approximation