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Outline


• Problem setup:  randomized subspace approximations & canonical angles


• Prior probabilistic bounds/estimates & posterior residual-based guarantees


• Numerical comparisons: effectiveness of canonical angle bounds & estimates 

in practice
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Leading Singular Subspaces
• Singular value decomposition (SVD)


Given , , rank-k truncated SVD:





• Maximum-k singular values: 


• Leading-k singular subspaces: 


• Eckart–Young–Mirsky theorem





• Truncated SVD provides the optimal rank-k approximation


• Broad Applications


• Low-rank approximations, PCA, CCA, spectral clustering, 
leverage score sampling, etc.

A ∈ ℂm×n 1 ≤ k ≤ r = rank(A)

Ak = Uk
m×k

Σk
k×k

V*k
k×n

Σk = diag(σ1, …, σk)

U*k Uk = V*k Vk = Ik

Ak = min
rank( ̂A )≤k

∥A − ̂A ∥F
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Spectral clustering on the dimension-6 
leading singular subspace of a mini-MNIST 

dataset (8  8 images of digits 0-5)×



Leading Singular Subspaces
• Singular value decomposition (SVD)


Given , , rank-k truncated SVD:





• Maximum-k singular values: 


• Leading-k singular subspaces: 


• Eckart–Young–Mirsky theorem





• Truncated SVD provides the optimal rank-k approximation


• Broad Applications


• Low-rank approximations, PCA, CCA, spectral clustering, 
leverage score sampling, etc.

A ∈ ℂm×n 1 ≤ k ≤ r = rank(A)

Ak = Uk
m×k

Σk
k×k

V*k
k×n

Σk = diag(σ1, …, σk)

U*k Uk = V*k Vk = Ik

Ak = min
rank( ̂A )≤k

∥A − ̂A ∥F

3

Spectral clustering on the dimension-6 
leading singular subspace of a mini-MNIST 

dataset (8  8 images of digits 0-5)×

Sketching: Approximate leading singular subspaces 
efficiently for large matrices


Questions: How accurate are these approximations? 
Tight & efficiently computable error bounds & estimates?



Randomized Subspace Approximations with Sketching
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• Inputs: , sample size  with  (e.g., ), number of power iterations 
 (  usually)


• Outputs:  such that 


1. Randomized linear embedding (Johnson-Lindenstrauss transforms, etc.)


• Draw  with i.i.d. entries  such that 


2. Sketching with power iterations


• Randomized power iterations (unstable): 


• Randomized subspace iterations (stable): 


3. 


4. 


5.

A ∈ ℂm×n l k < l ≤ r = rank(A) l = 2k ≪ r
q ∈ {0,1,2,⋯} q ≤ 2

RSVD(A, l, q) = ( ̂U l ∈ ℂm×l, ̂Σ l ∈ ℂl×l, ̂V l ∈ ℂn×l) ̂A l = ̂U l
̂Σ l

̂V *l ≈ A

Ω ∼ P(ℂn×l) Ωij ∼ 𝒩(0,l−1) 𝔼[ΩΩ*] = In

X(q) = (AA*)qAΩ

X(0) = ortho(AΩ), X(i) = ortho(A ortho(A*X(i−1))) ∀ i ∈ [q]

QX = ortho(X(q))

[ Ũ l, ̂Σ l, ̂V l] = svd(A*QX)

̂U l = QX Ũ l



Randomized Subspace Approximations with Sketching
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Isotropic embedding
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̂U l = QX Ũ l



Key observations: with  being the spectrum of 


• For any ,  power iterations correspond to 


• Compared to ,  enjoys half more power iterations (i.e., )

Σ A

q ∈ ℕ q Σ2q+1

̂U l
̂V l Σ2q+2
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Canonical Angles: Alignment between Subspaces
• Canonical angles  measure the alignment between two subspaces  with 

dimensions  respectively (  w.l.o.g), e.g.,  


• True leading singular subspace: 


• Approximated leading singular subspace: 


• Left & right canonical angles of : ,





∠(𝒰, 𝒱) = (θ1, ⋯, θk) 𝒰, 𝒱 ⊆ ℂd

k, l ≤ d k < l

𝒰 = range(Uk)

𝒱 = range( ̂U l)

RSVD(A, l, q) = ( ̂U l, ̂Σ l, ̂V l) ∀ i ∈ [k]

sin∠i(Uk, ̂U l) = σk−i+1((Im − ̂U l
̂U *l )Uk), cos∠i(Uk, ̂U l) = σi( ̂U *l Uk)

sin∠i(Vk, ̂V l) = σk−i+1((Im − ̂V l
̂V *l )Vk), cos∠i(Vk, ̂V l) = σi( ̂V *l Vk)
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Prior v.s. posterior guarantees: computed without v.s. with the outputs 


• Prior guarantees are probabilistic, with randomness from 


• Posterior guarantees are deterministic with given 

( ̂U l, ̂Σ l, ̂V l)

Ω ∼ P(ℂn×l)

( ̂U l, ̂Σ l, ̂V l)



Outline


• Problem setup:  randomized subspace approximations & canonical angles


• Prior probabilistic bounds/estimates & posterior residual-based 

guarantees


• Numerical comparisons: effectiveness of canonical angle bounds & estimates 

in practice
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Space-agnostic Prior Probabilistic Bounds

7

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

• With Gaussian embedding; small  such that ; oversampling 


• Notice that  and usually .  refers to a realistic case with non-negligible 
approximation error: when the tail of the spectrum  remains non-trivial after  power iterations


• With high probability (at least ), there exist  such that, 










• In practice, taking  is sufficient for upper bounds when  and 

q ∈ ℕ η ≜ (
r

∑
j=k+1

σ4q+4
j )

2

/
r

∑
j=k+1

σ2(4q+4)
j = Ω(l) l = Ω(k)

1 < η ≤ r − k r − k ≫ l η = Ω(l)
{σj}r

j=k+1 q

1 − e−Θ(k) − e−Θ(l) ϵ1 = Θ( k/l), ϵ2 = Θ( l/η), ϵ1, ϵ2 ∈ (0,1)
∀ i ∈ [k]

(1 + Oϵ1,ϵ2(
l ⋅ σ4q+2

i

∑r
j=k+1 σ4q+2

j ))
− 1

2

≤ sin∠i(Uk, ̂U l) ≤ (1 +
1 − ϵ1

1 + ϵ2
⋅

l ⋅ σ4q+2
i

∑r
j=k+1 σ4q+2

j )
− 1

2

(1 + Oϵ1,ϵ2(
l ⋅ σ4q+4

i

∑r
j=k+1 σ4q+4

j ))
− 1

2

≤ sin∠i(Vk, ̂V l) ≤ (1 +
1 − ϵ1

1 + ϵ2
⋅

l ⋅ σ4q+4
i

∑r
j=k+1 σ4q+4

j )
− 1

2

ϵ1 = k/l, ϵ2 = l/(r − k) l ≥ 1.6k q ≤ 10
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Comparison with Existing Prior Probabilistic Guarantees
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1. Saibaba, Arvind K. "Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms." SIAM Journal on Matrix Analysis and 
Applications 40.1 (2019): 23-48.

• Given , let  and . Then,  and 


• Prior work (Saibaba, 2018) : 





where for , given any , with probability at least ,





• Theorem 1 is space-agnostic since the randomized linear embedding  is isotropic 


• Only depends on the spectrum  , but not on the singular subspaces  or 


• In proof, we took an integrated view on the concentration of 

Ω ∼ P(ℂn×l) Ω1 ≜ V*k Ω Ω2 ≜ V*r∖kΩ Ω1 ∼ P(ℂk×l) Ω2 ∼ P(ℂ(r−k)×l)

1

sin∠i(Uk, ̂U l) ≤ (1 +
σ4q+2

i

σ4q+2
k+1 ∥Ω2Ω†

1∥2
2 )

− 1
2

, sin∠i(Vk, ̂V l) ≤ (1 +
σ4q+4

i

σ4q+4
k+1 ∥Ω2Ω†

1∥2
2 )

− 1
2

l ≥ k + 2 δ ∈ (0,1) 1 − δ

∥Ω2Ω†
1∥2 ≤

e l
l − k + 1 ( 2

δ )
1

l − k + 1

( n − k + l + 2 log
2
δ ) = Ω( n − k

l )
Ω ∼ P(ℂn×l)

{σj}r
j=1 (Uk, Ur\k) (Vk, Vr\k)

Σ2q+1
r∖k Ω2
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Recall the correspondence in 
Theorem 1:





where the smaller values lead 
to the tighter upper bounds

1
l

r

∑
j=k+1

σ4q+2
j ≤

n − k
l

σ4q+2
k+1
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• Draw independent Gaussian random matrices  and 


• Unbiased canonical angle estimates  such that





 


• Low variance in practice (i.e., negligible when )


• Can be computed efficiently with  operations (for a given spectrum )


• For any , without further assumptions on the sample size (e.g., )

{Ω( j)
1 ∼ P(ℂk×l) j ∈ [N]} {Ω( j)

2 ∼ P(ℂ(r−k)×l) j ∈ [N]}
αi = 𝔼 [sin∠i(Uk, ̂U l)], βi = 𝔼 [sin∠i(Vk, ̂V l)] ∀ i ∈ [k]

sin∠i(Uk, ̂U l) ≈ αi =
1
N

N

∑
j=1 (1 + σ2

i (Σ2q+1
k Ω( j)

1 (Σ2q+1
r∖k Ω( j)

2 )
†))

− 1
2

sin∠i(Vk, ̂V l) ≈ βi =
1
N

N

∑
j=1 (1 + σ2

i (Σ2q+2
k Ω( j)

1 (Σ2q+2
r∖k Ω( j)

2 )
†))

− 1
2

N ≥ 3

O(Nrl2) Σ

k ≤ l ≤ r η = Ω(l), l = Ω(k)

Unbiased Space-agnostic Estimates

9



Corresponds to  in 

the upper/lower bounds of Theorem 1

1 ∓ ϵ1

1 ± ϵ2
⋅

l ⋅ σ4q+2
i

∑r
j=k+1 σ4q+2

j

• Draw independent Gaussian random matrices  and 


• Unbiased canonical angle estimates  such that





 


• Low variance in practice (i.e., negligible when )


• Can be computed efficiently with  operations (for a given spectrum )


• For any , without further assumptions on the sample size (e.g., )

{Ω( j)
1 ∼ P(ℂk×l) j ∈ [N]} {Ω( j)

2 ∼ P(ℂ(r−k)×l) j ∈ [N]}
αi = 𝔼 [sin∠i(Uk, ̂U l)], βi = 𝔼 [sin∠i(Vk, ̂V l)] ∀ i ∈ [k]

sin∠i(Uk, ̂U l) ≈ αi =
1
N

N

∑
j=1 (1 + σ2

i (Σ2q+1
k Ω( j)

1 (Σ2q+1
r∖k Ω( j)

2 )
†))

− 1
2

sin∠i(Vk, ̂V l) ≈ βi =
1
N

N

∑
j=1 (1 + σ2

i (Σ2q+2
k Ω( j)

1 (Σ2q+2
r∖k Ω( j)

2 )
†))

− 1
2

N ≥ 3

O(Nrl2) Σ

k ≤ l ≤ r η = Ω(l), l = Ω(k)

Unbiased Space-agnostic Estimates
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1. Posterior bounds based on full residuals: Theorem 2. (D., Martinsson, Nakatsukasa, 2022)


• 


• Deterministic and algorithm-independent (e.g., holds for any , and any embedding )


• Can be approximated with  operations


2. Posterior bounds based on sub-residuals: Theorem 3.


• Let , , , , . 

Assume . Then, for any unitary invariant norm , 


• Deterministic and holds for any , and any embedding 


• Can be approximated with  operations

sin∠i(Uk, ̂U l) ≤
σk−i+1 ((Im − ̂U l

̂U *l ) A)
σk

∧
σ1 ((Im − ̂U l

̂U *l ) A)
σi

k ≤ l ≤ r Ω

O(mnl)

E31 ≜ ̂U *m∖lA ̂V k E32 ≜ ̂U *m∖lA ̂V l∖k E33 ≜ ̂U *m∖lA ̂V n∖l Γ1 ≜
σ2

k − ∥E33∥2
2

σk
Γ2 ≜

σ2
k − ∥E33∥2

2

∥E33∥2
σk > ∥E33∥2 ∥ ⋅ ∥ ∥ sin∠(Uk, ̂U l)∥ ≤ ∥[E31, E32]∥/Γ1

k ≤ l ≤ r Ω

O(mnl)
10

Posterior Residual-based Guarantees



Outline


• Problem setup:  randomized subspace approximations & canonical angles


• Prior probabilistic bounds/estimates & posterior residual-based guarantees


• Numerical comparisons: effectiveness of canonical angle bounds & 

estimates in practice
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Space-agnostic bounds & estimates win on MNIST: 

Polynomial spectral decay

12

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true/approximated singular values

Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, 

Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces

Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

ϵ1 = k/l, ϵ2 = l/(r − k) shade  min/max in 
 samples 

negligible variance!

=
N = 3 ⇒

Black line: true 
canonical angles
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l = 1.6k

q ∈ {0,1}



Space-agnostic bounds & estimates win on MNIST: 

Polynomial spectral decay

12

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true/approximated singular values

Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, 

Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces

Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

ϵ1 = k/l, ϵ2 = l/(r − k) shade  min/max in 
 samples 

negligible variance!

=
N = 3 ⇒

Black line: true 
canonical angles


l = 1.6k

q ∈ {0,1}


l = 1.6k

q ∈ {5,10}
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Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based 
bounds in Theorem 2 & 3 (with true/approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and ϵ1 = k/l, ϵ2 = l/(r − k)

How about space-agnostic lower bounds in practice: MNIST
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Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based 
bounds in Theorem 2 & 3 (with true/approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and ϵ1 = k/l, ϵ2 = l/(r − k)

How about space-agnostic lower bounds in practice: MNIST


l = 4k

q ∈ {0,1}



Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based 
bounds in Theorem 2 & 3 (with true/approximated singular values), and true canonical angles

When are posterior bounds more effective:

Exponential spectral decay + low-error regimes
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l = 1.6k

q ∈ {0,1}



Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based 
bounds in Theorem 2 & 3 (with true/approximated singular values), and true canonical angles

When are posterior bounds more effective:
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l = 1.6k

q ∈ {0,1}


l = 4k

q ∈ {0,1}
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GitHub: https://github.com/dyjdongyijun/
Randomized_Subspace_Approximation

Thank You!

arXiv: https://arxiv.org/abs/2211.04676 

https://github.com/dyjdongyijun/Randomized_Subspace_Approximation
https://github.com/dyjdongyijun/Randomized_Subspace_Approximation
https://arxiv.org/abs/2211.04676

