Efficient Bounds and Estimates for Canonical Angles in Randomized Subspace Approximations

Yijun Dong*, Per-Gunnar Martinsson*, Yuji Nakatsukasa ${ }^{\dagger}$
*Oden Institute, University of Texas at Austin
${ }^{\dagger}$ Mathematical Institute, University of Oxford

Aug 24, 2023, ICIAM 2023, Tokyo, Japan

Outline

- Problem setup: randomized subspace approximations \& canonical angles
- Prior probabilistic bounds/estimates \& posterior residual-based guarantees
- Numerical comparisons: effectiveness of canonical angle bounds \& estimates in practice

Leading Singular Subspaces

- Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}, 1 \leq k \leq r=\operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$
\mathbf{A}_{k}=\underset{m \times k}{\mathbf{U}_{k}} \underset{k \times k}{\mathbf{\Sigma}_{k}} \underset{k \times n}{\mathbf{V}_{k}^{*}}
$$

- Maximum-k singular values: $\boldsymbol{\Sigma}_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$
- Leading-k singular subspaces: $\mathbf{U}_{k}^{*} \mathbf{U}_{k}=\mathbf{V}_{k}^{*} \mathbf{V}_{k}=\mathbf{I}_{k}$
- Eckart-Young-Mirsky theorem

$$
\mathbf{A}_{k}=\min _{\operatorname{rank}(\widehat{\mathbf{A}}) \leq k}\|\mathbf{A}-\widehat{\mathbf{A}}\|_{F}
$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
- Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Leading Singular Subspaces

- Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}, 1 \leq k \leq r=\operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$
\mathbf{A}_{k}=\underset{m \times k}{\mathbf{U}_{k}} \underset{k \times k}{\boldsymbol{\Sigma}_{k}} \mathbf{V}_{k}^{*}
$$

- Maximum-k singular values: $\boldsymbol{\Sigma}_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$
- Leading-k singular subspaces: $\mathbf{U}_{k}^{*} \mathbf{U}_{k}=\mathbf{V}_{k}^{*} \mathbf{V}_{k}=\mathbf{I}_{k}$
- Eckart-Young-Mirsky theorem

$$
\mathbf{A}_{k}=\min _{\operatorname{rank}(\widehat{\mathbf{A}}) \leq k}\|\mathbf{A}-\widehat{\mathbf{A}}\|_{F}
$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
- Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Spectral clustering on the dimension-6 leading singular subspace of a mini-MNIST dataset (8×8 images of digits $0-5$)

Leading Singular Subspaces

- Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}, 1 \leq k \leq r=\operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$
\mathbf{A}_{k}=\underset{m \times k}{\mathbf{U}_{k}} \underset{k \times k}{\boldsymbol{\Sigma}_{k}} \mathbf{V}_{k}^{*}
$$

- Maximum-k singular values: $\boldsymbol{\Sigma}_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$
- Leading-k singular subspaces: $\mathbf{U}_{k}^{*} \mathbf{U}_{k}=\mathbf{V}_{k}^{*} \mathbf{V}_{k}=\mathbf{I}_{k}$
- Eckart-Young-Mirsky theorem

$$
\mathbf{A}_{k}=\min _{\operatorname{rank}(\widehat{\mathbf{A}}) \leq k}\|\mathbf{A}-\widehat{\mathbf{A}}\|_{F}
$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
- Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Spectral clustering on the dimension-6 leading singular subspace of a mini-MNIST dataset (8×8 images of digits $0-5$)

Sketching: Approximate leading singular subspaces efficiently for large matrices

Questions: How accurate are these approximations?
Tight \& efficiently computable error bounds \& estimates?

Randomized Subspace Approximations with Sketching

- Inputs: $\mathbf{A} \in \mathbb{C}^{m \times n}$, sample size l with $k<l \leq r=\operatorname{rank}(\mathbf{A})$ (e.g., $l=2 k \ll r$), number of power iterations $q \in\{0,1,2, \cdots\}$ ($q \leq 2$ usually)
- Outputs: $\operatorname{RSVD}(\mathbf{A}, l, q)=\left(\widehat{\mathbf{U}}_{l} \in \mathbb{C}^{m \times l}, \widehat{\boldsymbol{\Sigma}}_{l} \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_{l} \in \mathbb{C}^{n \times l}\right)$ such that $\widehat{\mathbf{A}}_{l}=\widehat{\mathbf{U}}_{l} \widehat{\boldsymbol{\Sigma}}_{l} \widehat{\mathbf{V}}_{l}^{*} \approx \mathbf{A}$

1. Randomized linear embedding (Johnson-Lindenstrauss transforms, etc.)

- $\operatorname{Draw} \boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$ with i.i.d. entries $\Omega_{i j} \sim \mathcal{N}\left(0, l^{-1}\right)$ such that $\mathbb{E}\left[\boldsymbol{\Omega} \boldsymbol{\Omega}^{*}\right]=\mathbf{I}_{n}$

2. Sketching with power iterations

- Randomized power iterations (unstable): $\mathbf{X}^{(q)}=\left(\mathbf{A} \mathbf{A}^{*}\right)^{q} \mathbf{A} \boldsymbol{\Omega}$
- Randomized subspace iterations (stable): $\mathbf{X}^{(0)}=\operatorname{ortho}(\mathbf{A} \boldsymbol{\Omega}), \mathbf{X}^{(i)}=\operatorname{ortho}\left(\mathbf{A}\right.$ ortho($\left.\left(\mathbf{A}^{*} \mathbf{X}^{(i-1)}\right)\right) \forall i \in[q]$

3. $\mathbf{Q}_{X}=\operatorname{ortho}\left(\mathbf{X}^{(q)}\right)$
4. $\left[\widetilde{\mathbf{U}}_{l}, \widehat{\boldsymbol{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}\right]=\operatorname{svd}\left(\mathbf{A} * \mathbf{Q}_{X}\right)$
5. $\widehat{\mathbf{U}}_{l}=\mathbf{Q}_{X} \widetilde{\mathbf{U}}_{l}$

Randomized Subspace Approximations with Sketching

- Inputs: $\mathbf{A} \in \mathbb{C}^{m \times n}$, sample size l with $k<l \leq r=\operatorname{rank}(\mathbf{A})$ (e.g., $l=2 k \ll r$), number of power iterations $q \in\{0,1,2, \cdots\}$ ($q \leq 2$ usually)
- Outputs: $\operatorname{RSVD}(\mathbf{A}, l, q)=\left(\widehat{\mathbf{U}}_{l} \in \mathbb{C}^{m \times l}, \widehat{\boldsymbol{\Sigma}}_{l} \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_{l} \in \mathbb{C}^{n \times l}\right)$ such that $\widehat{\mathbf{A}}_{l}=\widehat{\mathbf{U}}_{l} \widehat{\boldsymbol{\Sigma}}_{l} \widehat{\mathbf{V}}_{l}^{*} \approx \mathbf{A}$

1. Randomized linear embedding (Johnson-Lindenstrauss transforms, etc.)

- $\operatorname{Draw} \boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$ with i.i.d. entries $\Omega_{i j} \sim \mathcal{N}\left(0, l^{-1}\right)$ such that $\mathbb{E}\left[\boldsymbol{\Omega} \boldsymbol{\Omega}^{*}\right]=\mathbf{I}_{n}$

2. Sketching with power iterations

Isotropic embedding

- Randomized power iterations (unstable): $\mathbf{X}^{(q)}=\left(\mathbf{A} \mathbf{A}^{*}\right)^{q} \mathbf{A} \boldsymbol{\Omega}$
- Randomized subspace iterations (stable): $\mathbf{X}^{(0)}=\operatorname{ortho}(\mathbf{A} \boldsymbol{\Omega}), \mathbf{X}^{(i)}=\operatorname{ortho}\left(\mathbf{A}\right.$ ortho($\left.\left(\mathbf{A}^{*} \mathbf{X}^{(i-1)}\right)\right) \forall i \in[q]$

3. $\mathbf{Q}_{X}=\operatorname{ortho}\left(\mathbf{X}^{(q)}\right)$
4. $\left[\widetilde{\mathbf{U}}_{l}, \widehat{\boldsymbol{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}\right]=\operatorname{svd}\left(\mathbf{A} * \mathbf{Q}_{X}\right)$
5. $\widehat{\mathbf{U}}_{l}=\mathbf{Q}_{X} \widetilde{\mathbf{U}}_{l}$

Randomized Subspace Approximations with Sketching

- Inputs: $\mathbf{A} \in \mathbb{C}^{m \times n}$, sample size l with $k<l \leq r=\operatorname{rank}(\mathbf{A})$ (e.g., $l=2 k \ll r$), number of power iterations $q \in\{0,1,2, \cdots\}$ ($q \leq 2$ usually)
- Outputs: $\operatorname{RSVD}(\mathbf{A}, l, q)=\left(\widehat{\mathbf{U}}_{l} \in \mathbb{C}^{m \times l}, \widehat{\boldsymbol{\Sigma}}_{l} \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_{l} \in \mathbb{C}^{n \times l}\right)$ such that $\widehat{\mathbf{A}}_{l}=\widehat{\mathbf{U}}_{l} \widehat{\boldsymbol{\Sigma}}_{l} \widehat{\mathbf{V}}_{l} * \approx \mathbf{A}$

1. Randomized linear embedding (Johnson-Lindenstrauss transforms, etc.)

- $\operatorname{Draw} \boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$ with i.i.d. entries $\Omega_{i j} \sim \mathcal{N}\left(0, l^{-1}\right)$ such that $\mathbb{E}\left[\boldsymbol{\Omega} \boldsymbol{\Omega}^{*}\right]=\mathbf{I}_{n}$

2. Sketching with power iterations

Isotropic embedding

- Randomized power iterations (unstable): $\mathbf{X}^{(q)}=\left(\mathbf{A} \mathbf{A}^{*}\right)^{q} \mathbf{A} \boldsymbol{\Omega}$
- Randomized subspace iterations (stable): $\mathbf{X}^{(0)}=\operatorname{ortho}(\mathbf{A} \boldsymbol{\Omega}), \mathbf{X}^{(i)}=\operatorname{ortho}\left(\mathbf{A}\right.$ ortho($\left.\left(\mathbf{A}^{*} \mathbf{X}^{(i-1)}\right)\right) \forall i \in[q]$

3. $\mathbf{Q}_{X}=\operatorname{ortho}\left(\mathbf{X}^{(q)}\right)$

Key observations: with $\boldsymbol{\Sigma}$ being the spectrum of \mathbf{A}
4. $\left[\widetilde{\mathbf{U}}_{l}, \widehat{\boldsymbol{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}\right]=\operatorname{svd}\left(\mathbf{A} * \mathbf{Q}_{X}\right) \longrightarrow$ For any $q \in \mathbb{N}, q$ power iterations correspond to $\boldsymbol{\Sigma}^{2 q+1}$
5. $\widehat{\mathbf{U}}_{l}=\mathbf{Q}_{X} \widetilde{\mathbf{U}}_{l}$

- Compared to $\widehat{\mathbf{U}}_{l}, \widehat{\mathbf{V}}_{l}$ enjoys half more power iterations (i.e., $\boldsymbol{\Sigma}^{2 q+2}$)

Canonical Angles: Alignment between Subspaces

- Canonical angles $\angle(\mathscr{U}, \mathscr{V})=\left(\theta_{1}, \cdots, \theta_{k}\right)$ measure the alignment between two subspaces $\mathscr{U}, \mathscr{V} \subseteq \mathbb{C}^{d}$ with dimensions $k, l \leq d$ respectively ($k<l$ w.l.o.g), e.g.,
- True leading singular subspace: $\mathscr{U}=\operatorname{range}\left(\mathbf{U}_{k}\right)$
- Approximated leading singular subspace: $\mathscr{V}=\operatorname{range}\left(\widehat{\mathbf{U}}_{l}\right)$
- Left \& right canonical angles of $\operatorname{RSVD}(\mathbf{A}, l, q)=\left(\widehat{\mathbf{U}}_{l}, \widehat{\boldsymbol{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}\right): \forall i \in[k]$,

$$
\begin{array}{ll}
\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)=\sigma_{k-i+1}\left(\left(\mathbf{I}_{m}-\widehat{\mathbf{U}}_{l} \widehat{\mathbf{U}}_{l}^{*}\right) \mathbf{U}_{k}\right), & \cos \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)=\sigma_{i}\left(\widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{k}\right) \\
\sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right)=\sigma_{k-i+1}\left(\left(\mathbf{I}_{m}-\widehat{\mathbf{V}}_{l} \widehat{\mathbf{V}}_{l}^{*}\right) \mathbf{V}_{k}\right), & \cos \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right)=\sigma_{i}\left(\widehat{\mathbf{V}}_{l}^{*} \mathbf{V}_{k}\right)
\end{array}
$$

Canonical Angles: Alignment between Subspaces

- Canonical angles $\angle(\mathscr{U}, \mathscr{V})=\left(\theta_{1}, \cdots, \theta_{k}\right)$ measure the alignment between two subspaces $\mathscr{U}, \mathscr{V} \subseteq \mathbb{C}^{d}$ with dimensions $k, l \leq d$ respectively ($k<l$ w.l.o.g), e.g.,
- True leading singular subspace: $\mathscr{U}=\operatorname{range}\left(\mathbf{U}_{k}\right)$
- Approximated leading singular subspace: $\mathscr{V}=\operatorname{range}\left(\widehat{\mathbf{U}}_{l}\right)$
- Left \& right canonical angles of $\operatorname{RSVD}(\mathbf{A}, l, q)=\left(\widehat{\mathbf{U}}_{l}, \widehat{\boldsymbol{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}\right): \forall i \in[k]$,

$$
\begin{array}{ll}
\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)=\sigma_{k-i+1}\left(\left(\mathbf{I}_{m}-\widehat{\mathbf{U}}_{l} \widehat{\mathbf{U}}_{l}^{*}\right) \mathbf{U}_{k}\right), & \cos \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)=\sigma_{i}\left(\widehat{\mathbf{U}}_{l}^{*} \mathbf{U}_{k}\right) \\
\sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right)=\sigma_{k-i+1}\left(\left(\mathbf{I}_{m}-\widehat{\mathbf{V}}_{l} \widehat{\mathbf{V}}_{l}^{*}\right) \mathbf{V}_{k}\right), & \cos \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right)=\sigma_{i}\left(\widehat{\mathbf{V}}_{l}^{*} \mathbf{V}_{k}\right)
\end{array}
$$

```
Prior v.s. posterior guarantees: computed without v.s. with the outputs ( }\mp@subsup{\widehat{\mathbf{U}}}{l}{},\mp@subsup{\widehat{\boldsymbol{\Sigma}}}{l}{},\mp@subsup{\widehat{\mathbf{V}}}{l}{}
- Prior guarantees are probabilistic, with randomness from \Omega}~P(\mp@subsup{\mathbb{C}}{}{n\timesl}
- Posterior guarantees are deterministic with given ( }\mp@subsup{\widehat{\mathbf{U}}}{l}{},\mp@subsup{\widehat{\boldsymbol{\Sigma}}}{l}{},\mp@subsup{\widehat{\mathbf{V}}}{l}{}
```

Outline

- Problem setup: randomized subspace approximations \& canonical angles
- Prior probabilistic bounds/estimates \& posterior residual-based guarantees
- Numerical comparisons: effectiveness of canonical angle bounds \& estimates in practice

Space-agnostic Prior Probabilistic Bounds

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2O22))

- With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq\left(\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}\right)^{2} / \sum_{j=k+1}^{r} \sigma_{j}^{2(4 q+4)}=\Omega(l)$; oversampling $l=\Omega(k)$
- Notice that $1<\eta \leq r-k$ and usually $r-k \gg l . \eta=\Omega(l)$ refers to a realistic case with non-negligible approximation error: when the tail of the spectrum $\left\{\sigma_{j}\right\}_{j=k+1}^{r}$ remains non-trivial after q power iterations
- With high probability (at least $\left.1-e^{-\Theta(k)}-e^{-\Theta(l)}\right)$, there exist $\epsilon_{1}=\Theta(\sqrt{k / l}), \epsilon_{2}=\Theta(\sqrt{l / \eta}), \epsilon_{1}, \epsilon_{2} \in(0,1)$ such that, $\forall i \in[k]$

$$
\begin{aligned}
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)^{-\frac{1}{2}} \\
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

- In practice, taking $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ is sufficient for upper bounds when $l \geq 1.6 k$ and $q \leq 10$

Space-agnostic Prior Probabilistic Bounds

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2O22))

- With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq\left(\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}\right)^{2} / \sum_{j=k+1}^{r} \sigma_{j}^{2(4 q+4)}=\Omega(l)$; oversampling $l=\Omega(k)$
- Notice that $1<\eta \leq r-k$ and usually $r-k \gg l . \eta=\Omega(l)$ refers to a realistic case with non-negligible approximation error: when the tail of the spectrum $\left\{\sigma_{j}\right\}_{j=k+1}^{r}$ remains non-trivial after q power iterations
- With high probability (at least $\left.1-e^{-\Theta(k)}-e^{-\Theta(l)}\right)$, there exist $\epsilon_{1}=\Theta(\sqrt{k / l}), \epsilon_{2}=\Theta(\sqrt{l / \eta}), \epsilon_{1}, \epsilon_{2} \in(0,1)$ such that, $\forall i \in[k]$

$$
\begin{aligned}
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)^{-\frac{1}{2}} \\
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

- In practice, taking $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ is sufficient for upper bounds when $l \geq 1.6 k$ and $q \leq 10$

Space-agnostic Prior Probabilistic Bounds

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

- With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq\left(\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}\right)^{2} / \sum_{j=k+1}^{r} \sigma_{j}^{2(4 q+4)}=\Omega(l)$; oversampling $l=\Omega(k)$
- Notice that $1<\eta \leq r-k$ and usually $r-k \gg l . \eta=\Omega(l)$ refers to a realistic case with non-negligible approximation error: when the tail of the spectrum $\left\{\sigma_{j}\right\}_{j=k+1}^{r}$ remains non-trivial after q power iterations
- With high probability (at least $\left.1-e^{-\Theta(k)}-e^{-\Theta(l)}\right)$, there exist $\epsilon_{1}=\Theta(\sqrt{k / l}), \epsilon_{2}=\Theta(\sqrt{l / \eta}), \epsilon_{1}, \epsilon_{2} \in(0,1)$ such that, $\forall i \in[k]$

$$
\begin{aligned}
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)^{-\frac{1}{2}} \\
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

- In practice, taking $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ is sufficient for upper bounds when $l \geq 1.6 k$ and $q \leq 10$

Space-agnostic Prior Probabilistic Bounds

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

- With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq\left(\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}\right)^{2} / \sum_{j=k+1}^{r} \sigma_{j}^{2(4 q+4)}=\Omega(l)$; oversampling $l=\Omega(k)$
- Notice that $1<\eta \leq r-k$ and usually $r-k \gg l . \eta=\Omega(l)$ refers to a realistic case with non-negligible approximation error: when the tail of the spectrum $\left\{\sigma_{j}\right\}_{j=k+1}^{r}$ remains non-trivial after q power iterations
- With high probability (at least $\left.1-e^{-\Theta(k)}-e^{-\Theta(l)}\right)$, there exist $\epsilon_{1}=\Theta(\sqrt{k / l}), \epsilon_{2}=\Theta(\sqrt{l / \eta}), \epsilon_{1}, \epsilon_{2} \in(0,1)$ such that, $\forall i \in[k]$

$$
\begin{aligned}
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)^{-\frac{1}{2}} \\
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

- In practice, taking $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ is sufficient for upper bounds when $l \geq 1.6 k$ and $q \leq 10$

Space-agnostic Prior Probabilistic Bounds

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2O22))

- With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq\left(\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}\right)^{2} / \sum_{j=k+1}^{r} \sigma_{j}^{2(4 q+4)}=\Omega(l)$; oversampling $l=\Omega(k)$
- Notice that $1<\eta \leq r-k$ and usually $r-k \gg l . \eta=\Omega(l)$ refers to a realistic case with non-negligible approximation error: when the tail of the spectrum $\left\{\sigma_{j}\right\}_{j=k+1}^{r}$ remains non-trivial after q power iterations
- With high probability (at least $\left.1-e^{-\Theta(k)}-e^{-\Theta(l)}\right)$, there exist $\epsilon_{1}=\Theta(\sqrt{k / l}), \epsilon_{2}=\Theta(\sqrt{l / \eta}), \epsilon_{1}, \epsilon_{2} \in(0,1)$ such that, $\forall i \in[k]$

$$
\begin{aligned}
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}}\right)^{-\frac{1}{2}} \\
& \left(1+O_{\epsilon_{1}, \epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{1-\epsilon_{1}}{1+\epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+4}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

- In practice, taking $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ is sufficient for upper bounds when $l \geq 1.6 k$ and $q \leq 10$

Comparison with Existing Prior Probabilistic Guarantees

- Given $\boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$, let $\boldsymbol{\Omega}_{1} \triangleq \mathbf{V}_{k}^{*} \boldsymbol{\Omega}$ and $\boldsymbol{\Omega}_{2} \triangleq \mathbf{V}_{r \backslash k}^{*} \boldsymbol{\Omega}$. Then, $\boldsymbol{\Omega}_{1} \sim P\left(\mathbb{C}^{k \times l}\right)$ and $\boldsymbol{\Omega}_{2} \sim P\left(\mathbb{C}^{(r-k) \times l}\right)$
- Prior work (Saibaba, 2018) ${ }^{1}$:

$$
\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{\sigma_{i}^{4 q+2}}{\sigma_{k+1}^{4 q+2}\left\|\mathbf{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2}^{2}}\right)^{-\frac{1}{2}}, \quad \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{\sigma_{i}^{4 q+4}}{\sigma_{k+1}^{4 q+4}\left\|\mathbf{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2}^{2}}\right)^{-\frac{1}{2}}
$$

where for $l \geq k+2$, given any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\left\|\mathbf{\Omega}_{2} \mathbf{\Omega}_{1}^{\dagger}\right\|_{2} \leq \frac{e \sqrt{l}}{l-k+1}\left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}}\left(\sqrt{n-k}+\sqrt{l}+\sqrt{2 \log \frac{2}{\delta}}\right)=\Omega\left(\sqrt{\frac{n-k}{l}}\right)
$$

- Theorem 1 is space-agnostic since the randomized linear embedding $\boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$ is isotropic
- Only depends on the spectrum $\left\{\sigma_{j}\right\}_{j=1}^{r}$, but not on the singular subspaces $\left(\mathbf{U}_{k}, \mathbf{U}_{r \mid k}\right)$ or $\left(\mathbf{V}_{k}, \mathbf{V}_{r \mid k}\right)$
- In proof, we took an integrated view on the concentration of $\boldsymbol{\Sigma}_{r \backslash k}^{2 q+1} \boldsymbol{\Omega}_{2}$

Comparison with Existing Prior Probabilistic Guarantees

- Given $\boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$, let $\boldsymbol{\Omega}_{1} \triangleq \mathbf{V}_{k}^{*} \boldsymbol{\Omega}$ and $\boldsymbol{\Omega}_{2} \triangleq \mathbf{V}_{r \backslash k}^{*}$. Then, $\boldsymbol{\Omega}_{1} \sim P\left(\mathbb{C}^{k \times l}\right)$ and $\boldsymbol{\Omega}_{2} \sim P\left(\mathbb{C}^{(r-k) \times l}\right)$
- Prior work (Saibaba, 2018) ${ }^{1}$:

$$
\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{\sigma_{i}^{4 q+2}}{\sigma_{k+1}^{4 q+2}\left\|\mathbf{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2}^{2}}\right)^{-\frac{1}{2}}, \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{\sigma_{i}^{4 q+4}}{\sigma_{k+1}^{4 q+4}\left\|\boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2}^{2}}\right)^{-\frac{1}{2}}
$$

where for $l \geq k+2$, given any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\left\|\boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2} \leq \frac{e \sqrt{l}}{l-k+1}\left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}}\left(\sqrt{n-k}+\sqrt{l}+\sqrt{2 \log \frac{2}{\delta}}\right)=\Omega\left(\sqrt{\frac{n-k}{l}}\right)
$$

- Theorem 1 is space-agnostic since the randomized linear embedding $\boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$ is isotropic
- Only depends on the spectrum $\left\{\sigma_{j}\right\}_{j=1}^{r}$, but not on the singular subspaces $\left(\mathbf{U}_{k}, \mathbf{U}_{r \mid k}\right)$ or $\left(\mathbf{V}_{k}, \mathbf{V}_{r \mid k}\right)$
- In proof, we took an integrated view on the concentration of $\boldsymbol{\Sigma}_{r \backslash k}^{2 q+1} \boldsymbol{\Omega}_{2}$

Comparison with Existing Prior Probabilistic Guarantees

- Given $\boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$, let $\boldsymbol{\Omega}_{1} \triangleq \mathbf{V}_{k}^{*} \boldsymbol{\Omega}$ and $\boldsymbol{\Omega}_{2} \triangleq \mathbf{V}_{r \backslash k}^{*} \boldsymbol{\Omega}$. Then, $\boldsymbol{\Omega}_{1} \sim P\left(\mathbb{C}^{k \times l}\right)$ and $\boldsymbol{\Omega}_{2} \sim P\left(\mathbb{C}^{(r-k) \times l}\right)$

Isotropic embedding: $\boldsymbol{\Omega}_{1}$, $\boldsymbol{\Omega}_{2}$ are agnostic of $\mathbf{V}_{k^{\prime}} \mathbf{V}_{r \backslash k}$

- Prior work (Saibaba, 2018) ${ }^{1}$:

$$
\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq\left(1+\frac{\sigma_{i}^{4 q+2}}{\sigma_{k+1}^{4 q+2}\left\|\mathbf{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2}^{2}}\right)^{-\frac{1}{2}}, \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \leq\left(1+\frac{\sigma_{i}^{4 q+4}}{\sigma_{k+1}^{4 q+4}\left\|\boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2}^{2}}\right)_{\mathrm{Re}}^{-\frac{1}{2}}
$$

Recall the correspondence in where for $l \geq k+2$, given any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\left\|\boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{\dagger}\right\|_{2} \leq \frac{e \sqrt{l}}{l-k+1}\left(\frac{2}{\delta}\right)^{\frac{1}{1-k+1}}\left(\sqrt{n-k}+\sqrt{l}+\sqrt{2 \log \frac{2}{\delta}}\right)=\Omega\left(\sqrt{\frac{n-k}{l}}\right)
$$

Theorem 1:
$\frac{1}{l} \sum_{j=k+1}^{r} \sigma_{j}^{4 q+2} \leq \frac{n-k}{l} \sigma_{k+1}^{4 q+2}$ where the smaller values lead to the tighter upper bounds

- Theorem 1 is space-agnostic since the randomized linear embedding $\boldsymbol{\Omega} \sim P\left(\mathbb{C}^{n \times l}\right)$ is isotropic
- Only depends on the spectrum $\left\{\sigma_{j}\right\}_{j=1}^{r}$, but not on the singular subspaces $\left(\mathbf{U}_{k}, \mathbf{U}_{r \mid k}\right)$ or $\left(\mathbf{V}_{k}, \mathbf{V}_{r \mid k}\right)$
- In proof, we took an integrated view on the concentration of $\boldsymbol{\Sigma}_{r \backslash k}^{2 q+1} \boldsymbol{\Omega}_{2}$

Unbiased Space-agnostic Estimates

- Draw independent Gaussian random matrices $\left\{\boldsymbol{\Omega}_{1}^{(j)} \sim P\left(\mathbb{C}^{k \times l}\right) \mid j \in[N]\right\}$ and $\left\{\boldsymbol{\Omega}_{2}^{(j)} \sim P\left(\mathbb{C}^{(r-k) \times l}\right) \mid j \in[N]\right\}$
- Unbiased canonical angle estimates $\alpha_{i}=\mathbb{E}\left[\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)\right], \beta_{i}=\mathbb{E}\left[\sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right)\right] \forall i \in[k]$ such that

$$
\begin{aligned}
& \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \approx \alpha_{i}=\frac{1}{N} \sum_{j=1}^{N}\left(1+\sigma_{i}^{2}\left(\boldsymbol{\Sigma}_{k}^{2 q+1} \boldsymbol{\Omega}_{1}^{(j)}\left(\boldsymbol{\Sigma}_{r \backslash k}^{2 q+1} \boldsymbol{\Omega}_{2}^{(j)}\right)^{\dagger}\right)\right)^{-\frac{1}{2}} \\
& \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \approx \beta_{i}=\frac{1}{N} \sum_{j=1}^{N}\left(1+\sigma_{i}^{2}\left(\boldsymbol{\Sigma}_{k}^{2 q+2} \mathbf{\Omega}_{1}^{(j)}\left(\boldsymbol{\Sigma}_{r \backslash k}^{2 q+2} \mathbf{\Omega}_{2}^{(j)}\right)^{\dagger}\right)\right)^{-\frac{1}{2}}
\end{aligned}
$$

- Low variance in practice (i.e., negligible when $N \geq 3$)
- Can be computed efficiently with $O\left(N r l^{2}\right)$ operations (for a given spectrum $\mathbf{\Sigma}$)
- For any $k \leq l \leq r$, without further assumptions on the sample size (e.g., $\eta=\Omega(l), l=\Omega(k)$)

Unbiased Space-agnostic Estimates

- Draw independent Gaussian random matrices $\left\{\boldsymbol{\Omega}_{1}^{(j)} \sim P\left(\mathbb{C}^{k \times l}\right) \mid j \in[N]\right\}$ and $\left\{\boldsymbol{\Omega}_{2}^{(j)} \sim P\left(\mathbb{C}^{(r-k) \times l}\right) \mid j \in[N]\right\}$
- Unbiased canonical angle estimates $\alpha_{i}=\mathbb{E}\left[\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)\right], \beta_{i}=\mathbb{E}\left[\sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right)\right] \forall i \in[k]$ such that

$$
\begin{aligned}
& \sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \approx \alpha_{i}=\frac{1}{N} \sum_{j=1}^{N}\left(1+\sigma_{i}^{2}\left(\boldsymbol{\Sigma}_{k}^{2 q+1} \mathbf{\Omega}_{1}^{(j)}\left(\boldsymbol{\Sigma}_{r \backslash k}^{2 q+1} \mathbf{\Omega}_{2}^{(j)}\right)^{\dagger}\right)\right)^{-\frac{1}{2}} \rightarrow \text { Corresponds to } \frac{1 \mp \epsilon_{1}}{1 \pm \epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4 q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4 q+2}} \text { in } \\
& \sin \angle_{i}\left(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}\right) \approx \beta_{i}=\frac{1}{N} \sum_{j=1}^{N}\left(1+\sigma_{i}^{2}\left(\boldsymbol{\Sigma}_{k}^{2 q+2} \mathbf{\Omega}_{1}^{(j)}\left(\boldsymbol{\Sigma}_{r \backslash k}^{2 q+2} \mathbf{\Omega}_{2}^{(j)}\right)^{\dagger}\right)\right)^{-\frac{1}{2}} \quad \text { the upper/lower bounds of Theorem } 1
\end{aligned}
$$

- Low variance in practice (i.e., negligible when $N \geq 3$)
- Can be computed efficiently with $O\left(N r l^{2}\right)$ operations (for a given spectrum $\mathbf{\Sigma}$)
- For any $k \leq l \leq r$, without further assumptions on the sample size (e.g., $\eta=\Omega(l), l=\Omega(k))$

Posterior Residual-based Guarantees

1. Posterior bounds based on full residuals: Theorem 2. (D., Martinsson, Nakatsukasa, 2022)

- $\sin \angle_{i}\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right) \leq \frac{\sigma_{k-i+1}\left(\left(\mathbf{I}_{m}-\widehat{\mathbf{U}}_{l} \widehat{\mathbf{U}}_{l}^{*}\right) \mathbf{A}\right)}{\sigma_{k}} \wedge \frac{\sigma_{1}\left(\left(\mathbf{I}_{m}-\widehat{\mathbf{U}}_{l} \widehat{\mathbf{U}}_{l}^{*}\right) \mathbf{A}\right)}{\sigma_{i}}$
- Deterministic and algorithm-independent (e.g., holds for any $k \leq l \leq r$, and any embedding $\boldsymbol{\Omega}$)
- Can be approximated with $O(\mathrm{mnl})$ operations

2. Posterior bounds based on sub-residuals: Theorem 3.

- Let $\mathbf{E}_{31} \triangleq \widehat{\mathbf{U}}_{m \backslash l}^{*} \mathbf{A} \widehat{\mathbf{V}}_{k^{\prime}} \mathbf{E}_{32} \triangleq \widehat{\mathbf{U}}_{m \backslash l}^{*} \mathbf{A} \widehat{\mathbf{V}}_{l \backslash k^{\prime}} \mathbf{E}_{33} \triangleq \widehat{\mathbf{U}}_{m \backslash l}^{*} \mathbf{A} \widehat{\mathbf{V}}_{n \backslash l^{\prime}} \Gamma_{1} \triangleq \frac{\sigma_{k}^{2}-\left\|\mathbf{E}_{33}\right\|_{2}^{2}}{\sigma_{k}}, \Gamma_{2} \triangleq \frac{\sigma_{k}^{2}-\left\|\mathbf{E}_{33}\right\|_{2}^{2}}{\left\|\mathbf{E}_{33}\right\|_{2}}$.

Assume $\sigma_{k}>\left\|\mathbf{E}_{33}\right\|_{2}$. Then, for any unitary invariant norm $\|\cdot\|,\left\|\sin \angle\left(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}\right)\right\| \leq\left\|\left[\mathbf{E}_{31}, \mathbf{E}_{32}\right]\right\| / \Gamma_{1}$

- Deterministic and holds for any $k \leq l \leq r$, and any embedding $\boldsymbol{\Omega}$
- Can be approximated with $O(\mathrm{mnl})$ operations

Outline

- Problem setup: randomized subspace approximations \& canonical angles
- Prior probabilistic bounds/estimates \& posterior residual-based guarantees
- Numerical comparisons: effectiveness of canonical angle bounds \& estimates in practice

Space-agnostic bounds \& estimates win on MNIST:

Polynomial spectral decay

Black line: true canonical angles

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true)approximatedisingular values Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces Cyan \& green lines/dashes: Posterior residual-based bounds in Theorem $2 \& 3$ with true/approximated singular values
shade $=\min /$ max in $N=3$ samples \Rightarrow negligible variance!

Space-agnostic bounds \& estimates win on MNIST:

Polynomial spectral decay

Black line: true canonical angles

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true)approximatedisingular values Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces Cyan \& green lines/dashes: Posterior residual-based bounds in Theorem $2 \& 3$ with true/approximated singular values
shade $=\min /$ max in $N=3$ samples \Rightarrow negligible variance!

Space-agnostic bounds \& estimates win on MNIST:

Polynomial spectral decay

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true)approximatedisingular values Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$ Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces Cyan \& green lines/dashes: Posterior residual-based bounds in Theorem $2 \& 3$ with true/approximated singular values
shade $=\min /$ max in $N=3$ samples \Rightarrow negligible variance!

How about space-agnostic lower bounds in practice: MNIST

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 \& 3 (with true approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$

How about space-agnostic lower bounds in practice: MNIST

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 \& 3 (with true approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and $\epsilon_{1}=\sqrt{k / l}, \epsilon_{2}=\sqrt{l /(r-k)}$

When are posterior bounds more effective:

Exponential spectral decay + low-error regimes

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 \& 3 (with true approximatedsingular values), and true canonical angles

When are posterior bounds more effective:

Exponential spectral decay + low-error regimes

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 \& 3 (with true approximated singular values), and true canonical angles

When are posterior bounds more effective:

Exponential spectral decay + low-error regimes

$\sin \angle\left(U_{k}, X\right), k=50, I=200, q=0 \sin \angle\left(V_{k}, Y\right), k=50, I=200, q=0 \sin \angle\left(U_{k}, X\right), k=50, I=200, q=1 \sin \angle\left(V_{k}, Y\right), k=50, I=200, q=1$

$$
\begin{gathered}
l=4 k \\
q \in\{0,1\}
\end{gathered}
$$

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 \& 3 (with true approximatedsingular values), and true canonical angles

Thank You!

arXiv: https://arxiv.org/abs/2211.04676

GitHub: https://github.com/dyjdongyijun/ Randomized_Subspace_Approximation

