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Interpolative Decomposition (ID)

• Given a data matrix  

• A target rank  

• A distortion constant  

• Aim to construct a -ID of  ——  such that  

 

•  contains indices for a skeleton subset of size  (usually ) 

•  is the row skeleton submatrix corresponding to  

•  is an interpolation matrix for the given skeleton subset  

•  denotes the optimal rank-  approximation of  (given by the truncated SVD)

X = [x1, ⋯, xn]⊤ ∈ ℝn×d

1 ≤ r ≤ rank(X)

ϵ > 0

(r, ϵ) X X ≈ WXS

∥X − WXS∥2
F ≤ (1 + ϵ)∥X − X⟨r⟩∥2

F

S = {s1, ⋯, sk} ⊆ [n] |S | = k k ≪ n

XS = [xs1
, ⋯, xsk

]⊤ ∈ ℝk×d S

W ∈ ℝn×k S

X⟨r⟩ r X

2

≈ W
n×k

XS
k×d

X
n×d



Two Stages of ID Constructions

• Stage I: Skeleton selection 

• Find a good skeleton subset :  

 

• Skeletonization error:  

• Naive construction of  (e.g., via QR) takes  time (i.e.,  additional passes through ) 

• Stage II: Interpolation matrix construction 

• For some -time selection algorithms,  can be evaluated/approximated a posteriori in  time 

• Interpolation error: 

S

min
S⊂[n]

min
W∈ℝn ×|S|

∥X − WXS∥2
F

ℰX(S) := ∥X − XX†
S XS∥2

F = min
W∈ℝn×|S|

∥X − WXS∥2
F

XX†
S O(ndk) k = |S | X

O(ndk) W O(nk2)

ℰX(W |S) := ∥X − WXS∥2
F
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What are Fast & Accurate ID Algorithms?
• Skeleton complexity: the minimum number of skeletons  that an ID algorithm needs to select in order 

to form a -ID (in expectation), i.e.,  

• Asymptotic complexity: the  asymptotic FLOP counts of the skeleton selection stage in an ID algorithm 

• Parallelizability: whether the dominant cost of the skeleton selection stage in an ID algorithm can be casted as 
matrix-matrix (fast), instead of matrix-vector (slow), multiplications with  (i.e., applicability of Level 3 BLAS) 

• Error-revealing property: the ability of an ID algorithm to evaluate  efficiently on the fly so that the target 
rank  does not need to be given a priori. 

• Definition: An ID algorithm is error-revealing if after selecting any skeleton subset S, it can evaluate the 
corresponding skeletonization error  efficiently in at most  time. 

• ID-revealing property: if the skeleton selection stage of an ID algorithm extracts sufficient information so that 

• Exact/inexact-ID-revealing:  can be evaluated exactly/approximated in  time 

• Non-ID-revealing otherwise

k = |S |
(r, ϵ) ℰX(S) ≤ (1 + ϵ)∥X − X⟨r⟩∥2

F

X

ℰX(S)
k

ℰX(S) O(n)

W = XX†
S O(nk2)
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Adaptiveness & Randomness

• Adaptiveness 

• Each new skeleton selection is aware of the 
previously selected skeleton subset 

• By selecting according to the residual 

• Common adaptive residual updates: 

• Gram-Schmidt (QR) 

• Gaussian elimination (LU)
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• Randomness (in contrast to greedy) 

• Intuition: balance exploitation with exploration 

• Effectively circumvent adversarial inputs for 
greedy methods 

• Achieve appealing skeleton complexities in 
expectation 

• Common randomness: sampling, sketching

1

1 + ξ

1 + ξ

Greedy Optimal

1

1 + ξ

1 + ξ

v.s.

Randomness



Skeleton Selection: A General Framework

A framework for (blockwise adaptive) skeleton seletion 

• Inputs: ,  

•  

• while  do 

•  

• Select  skeletons  based on  

•  

•  

•

X ∈ ℝn×d τ = (1 + ϵ)ηr ∈ (0,1)

X(0) ← X, S(0) ← ∅, t ← 0

ℰ(S(t)) > τ∥X∥2
F

t ← t + 1

|St | = b St (pi (X(t−1)))i∈[n]

S(t) ← S(t−1) ∪ St

X(t) ← X(t−1) (Id − X†
St

XSt)
S ← S(t), k = |S |
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pi =
∥xi∥2

2

∥X∥2
F

pi = δi,argmaxj∥xj∥2
2

Randomness

Adaptiveness

b = 1

1 < b < k

b = k

Sequential 
Greedy Pivoting 

(CPQR)

Adaptive Sampling 
[DV06]/RPCholesky 

[CETW22] (SRP)

Squared-norm 
Sampling 
(SqNorm)
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Sequential 
Greedy Pivoting 

(CPQR)

Adaptive Sampling 
[DV06]/RPCholesky 

[CETW22] (SRP)

Squared-norm 
Sampling 
(SqNorm)



Skeleton Selection: Other Methods
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Sampling methods 

• DPP/volume sampling [HKPV06, BW09, DR10, KT11, GS12] 

• Pro: nearly optimal expected skeleton complexity: 
 is sufficient for -ID in expectation 

• Con: expensive to compute  

• Leverage score sampling [MD09, DMMW12]  

• Pro: can be estimated efficiently for large-scale 
problems (e.g., tensor Khatri-Rao product) 

• Con: expensive to compute 

• Uniform sampling [CLMMPS15] 

• Pro: linear time 

• Con: require/depend on matrix incoherence

k ≥
r
ϵ

+ r − 1 (r, ϵ)



Skeleton Selection: Other Methods
Sketchy pivoting 

• Inputs: , ,  

• Draw JLT  (e.g.,  i.i.d.) 

• Sketching  

• Greedy pivoting: for  

• Column (row) pivoted QR (CPQR) [VM17]: 
 + Gram-Schmidt 

• LU with partial pivoting (LUPP) [DM23]: 
 + Gaussian Elimination 

• Pro: fast, accurate, robust to adversarial inputs 

• Con: require prior knowledge of 

X ∈ ℝn×d k ≤ rank(X)

Ω ∈ ℝd×k Ωij ∼ 𝒩(0,1/k)

Y = XΩ ∈ ℝn×k

t = 1,⋯, k

st ← argmax
i

∥Y(t−1)
i,: ∥2

2

st ← argmax
i

|Y(t−1)
i,t |

k
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ID Algorithms with Adaptiveness & Randomness
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Randomness

Adaptiveness

Sampling: uniform, 
squared-norm, leverage 
score, volume/DPP, etc.

Greedy pivoting: column-
pivoted QR (CPQR), 

(strong) rank-revealing QR, 
etc.

Sketchy pivoting: sketching 
+ (greedy) pivoting

Adaptive sampling (random 
pivoting): squared-norm 
sampling on QR residual

Algorithm Skeleton Complexity Asymp. Cost + 
Parallelizability

Error-
reveal

ID-
reveal

Greedy 
Pivoting Exact

Squared-
norm 

Sampling
Non

Random 
Pivoting Exact

Sketchy 
Pivoting Inexact

RBRP Exact

k ≥ (1 + (1 + ϵ)ηr)n  sequentialO(ndk)

 parallelO(nd)

 sequentialO(ndk)

 parallelO(ndk)

 parallelO(ndk)

k ≥
r − 1
ϵηr

+
1
ϵ

k ≥ kRP :=
r
ϵ

+ r log min { 1
ϵηr

,
2r+1

ϵ }
Conjecture: k ≳ kRP

Conjecture: k ≳ kRP

  quantifies the relative optimal rank-  approximation error of * ηr = ∥X − X<r>∥2
F/∥X∥2

F r X
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1
ϵ
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r
ϵ
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ϵηr
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F/∥X∥2

F r X

Question: How to parallelize random pivoting? 
Answer: Blockwise random pivoting



Pitfall of Plain Blockwise Greedy/Random Pivoting
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(0,0,20) + 𝒩(0,I3)

Optimal (CPQR/SRP)

(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

Plain BGP 
( )b = 3

Plain BRP 
( )b = 3



Pitfall of Plain Blockwise Greedy/Random Pivoting
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(0,0,20) + 𝒩(0,I3)

Optimal (CPQR/SRP)

(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

Plain BGP 
( )b = 3

Plain BRP 
( )b = 3

• Sequential pivoting (CPQR & SRP) is nearly optimal 

• Plain blockwise pivoting (BRP/BGP, especially BGP) suffers 
from suboptimal skeleton complexities (up to  times) 

• Squared-norm sampling (SqNorm) tends to fail

b

 clusters centered at , , , k = 100 {10j ⋅ ej}j∈[k] n = 20k d = 500 b = 30



Robust Blockwise Random Pivoting
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Robust Blockwise Random Pivoting (RBRP) 

• Inputs: ,  

•  

• while   ( ) do 

• Select  skeletons  based on  

• Robust blockwise filtering (RBF) 

•  (SRP and CPQR both work) 

•  (e.g., ) 

•  and  

•

X ∈ ℝn×d τ = (1 + ϵ)ηr ∈ (0,1)

X(0) ← X, S(0) ← ∅, t ← 0

ℰ(S(t)) > τ∥X∥2
F t ← t + 1

|St | = b St (pi (X(t−1)))i∈[n]

π ← CPQR (X(t−1)
St ) ∈ Sb

min
S′ t=St(π(1:b′ ))

b′ s . t . ∥XSt
− XS′ t

∥2
F < τb∥XSt

∥2
F τb =

1
b

S(t) ← S(t−1) ∪ S′ t X(t) ← X(t−1) (Id − X†
S′ t

XS′ t)
S ← S(t), k = |S |

(0,0,20) + 𝒩(0,I3)

S1(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)



Robust Blockwise Random Pivoting
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•  

• while   ( ) do 
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min
S′ t=St(π(1:b′ ))

b′ s . t . ∥XSt
− XS′ t

∥2
F < τb∥XSt

∥2
F τb =

1
b

S(t) ← S(t−1) ∪ S′ t X(t) ← X(t−1) (Id − X†
S′ t

XS′ t)
S ← S(t), k = |S |

(0,0,20) + 𝒩(0,I3)

S1(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

(0,0,20) + 𝒩(0,I3)

S′ 1(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

Robust blockwise filtering



Robust Blockwise Random Pivoting: Robustness

• GMM with  clusters centered at , , , ,  
• Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities

k = 100 {10j ⋅ ej}j∈[k] Σ = Id n = 20k d = 500 b = 30
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Robust Blockwise Random Pivoting: Efficiency

• Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities 
• RBGP tends to be slowed down much more significantly than RBRP by robust blockwise filtering 
• For ID: RBRP-ID is almost as fast as sketchy pivoting (SkLUPP-ID/SkCPQR-ID), while enjoying 

much better interpolation error  thanks to its exact-ID-revealing property.ℰX(W |S) = ℰX(S)
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Exact- v.s. Inexact- ID-revealing Algorithms
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• Exact-ID-revealing algorithms 

• Sequential/blockwise random/greedy pivoting algorithms (SRP, CPQR, BRP, BGP, RBRP, RBGP) 

• The skeleton selection process generates sufficient information for solving the least square problem 
 in  time 

• Inexact-ID-revealing algorithms 

• Sketchy pivoting algorithms (SkLUPP, SkCPQR) 

• The skeleton selection process generates sufficient information for solving the sketched least square problem 
 in  time 

• Oversampled sketchy ID (OSID): for  

•  Sketching with oversampling  such that  

•  can be computed in  time 

• Suboptimal interpolation error: 

min
W∈ℝn×k

∥X − WXS∥2
F O(nk2)

min
W∈ℝn×k

∥XΩ − WXSΩ∥2
F O(nk2)

|S | = k

Y = XΩ ∈ ℝn×l l = O(k)

W = YY†
S O(nlk) = O(nk2)

ℰX(W |S) − ℰX(S) = O(k/l)



More Numerical Comparisons: MNIST
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More Numerical Comparisons: CIFAR-10
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Summary
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• A fast & accurate ID algorithm that finds  

• With nearly optimal skeleton complexity in practice 

• Computationally efficient in terms of both asymptotic complexity and parallelizability 

• Error-revealing without requiring prior knowledge of the target skeleton subset size 

• Exact-ID-revealing where the optimal interpolation matrix can be computed efficiently 

• Combining adaptiveness and randomness is a key for designing robust skeleton selection algorithms with 
competitive skeleton complexity 

• A critical challenge is to relax the sequential natural of adaptive selection 

• We introduced Robust Blockwise Random Pivoting (RBRP), a parallelizable blockwise adaptive selection 
scheme that achieves comparable skeleton complexity as its sequential counterpart

∥X − WXS∥2
F ≤ (1 + ϵ)∥X − X⟨r⟩∥2

F
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GitHub: https://github.com/dyjdongyijun/
Robust_Blockwise_Random_Pivoting

Thank You!

arXiv: https://arxiv.org/abs/2309.16002 

https://github.com/dyjdongyijun/Robust_Blockwise_Random_Pivoting
https://github.com/dyjdongyijun/Robust_Blockwise_Random_Pivoting
https://arxiv.org/abs/2309.16002

