Robust Blockwise Random Pivoting (RBRP): Fast and Accurate Adaptive Interpolative Decomposition

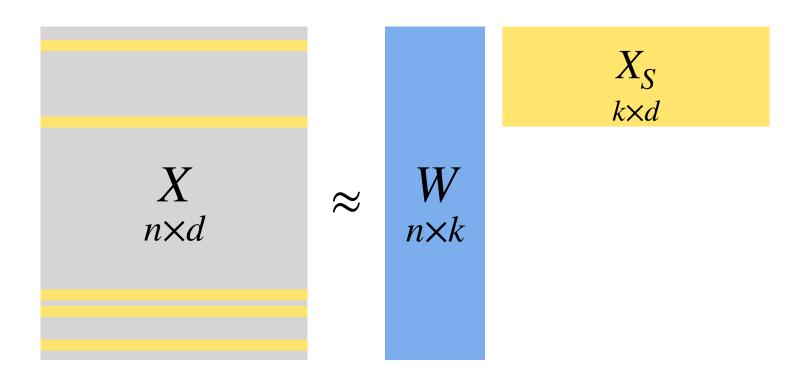
SIAM Conference on Parallel Processing for Scientific Computing (PP24)

Yijun Dong¹, Chao Chen², Per-Gunnar Martinsson³, Katherine Pearce³

¹Courant Institute, New York University ²Department of Mathematics, North Carolina State University ³Oden Institute, University of Texas at Austin

Interpolative Decomposition (ID)

- Given a data matrix $X = [x_1, \dots, x_n]^\top \in \mathbb{R}^{n \times d}$
- A target rank $1 \le r \le \operatorname{rank}(X)$
- A distortion constant $\epsilon > 0$
- Aim to construct a (r, ϵ) -ID of $X X \approx WX_S$ such that $\|X - WX_{S}\|_{F}^{2}$
 - $S = \{s_1, \dots, s_k\} \subseteq [n]$ contains indices for a skeleton subset of size |S| = k (usually $k \ll n$)
 - $X_S = [x_{s_1}, \dots, x_{s_k}]^\top \in \mathbb{R}^{k \times d}$ is the row skeleton submatrix corresponding to S
 - $W \in \mathbb{R}^{n \times k}$ is an interpolation matrix for the given skeleton subset S
 - $X_{\langle r \rangle}$ denotes the optimal rank-*r* approximation of *X* (given by the truncated SVD)



$$\leq (1+\epsilon) \|X - X_{\langle r \rangle}\|_F^2$$

Two Stages of ID Constructions

Stage I: Skeleton selection

• Find a good skeleton subset S:

- Skeletonization error: $\mathscr{C}_X(S) := \|X XX_S^{\dagger}X_S\|_F^2 = \min_{W \in \mathbb{R}^{n \times |S|}} \|X WX_S\|_F^2$
 - Naive construction of XX_{S}^{\dagger} (e.g., via QR) takes O(ndk) time (i.e., k = |S| additional passes through X)

Stage II: Interpolation matrix construction

- For some O(ndk)-time selection algorithms, W can be evaluated/approximated a posteriori in $O(nk^2)$ time
- Interpolation error: $\mathscr{C}_X(W|S) := ||X WX_S||_F^2$

 $\min_{S \subset [n]} \min_{W \in \mathbb{R}^{n \times |S|}} \|X - WX_S\|_F^2$

What are Fast & Accurate ID Algorithms?

- to form a (r, ϵ) -ID (in expectation), i.e., $\mathscr{C}_X(S) \leq (1 + \epsilon) \|X X_{\langle r \rangle}\|_F^2$
- Asymptotic complexity: the asymptotic FLOP counts of the skeleton selection stage in an ID algorithm
- rank k does not need to be given a priori.
 - corresponding skeletonization error $\mathscr{C}_X(S)$ efficiently in at most O(n) time.
- - Exact/inexact-ID-revealing: $W = XX_{S}^{\dagger}$ can be evaluated exactly/approximated in $O(nk^{2})$ time
 - Non-ID-revealing otherwise

• Skeleton complexity: the minimum number of skeletons k = |S| that an ID algorithm needs to select in order

Parallelizability: whether the dominant cost of the skeleton selection stage in an ID algorithm can be casted as matrix-matrix (fast), instead of matrix-vector (slow), multiplications with X (i.e., applicability of Level 3 BLAS)

• Error-revealing property: the ability of an ID algorithm to evaluate $\mathscr{E}_X(S)$ efficiently on the fly so that the target

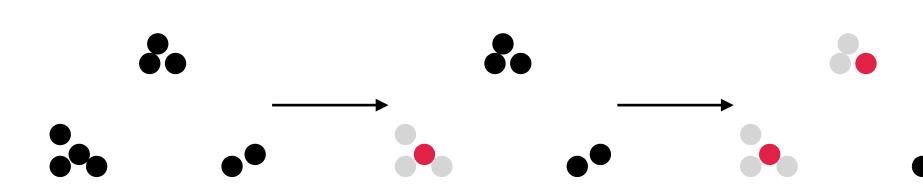
• <u>Definition</u>: An ID algorithm is error-revealing if after selecting any skeleton subset S, it can evaluate the

• **ID-revealing property:** if the skeleton selection stage of an ID algorithm extracts sufficient information so that

Adaptiveness & Randomness

• Adaptiveness

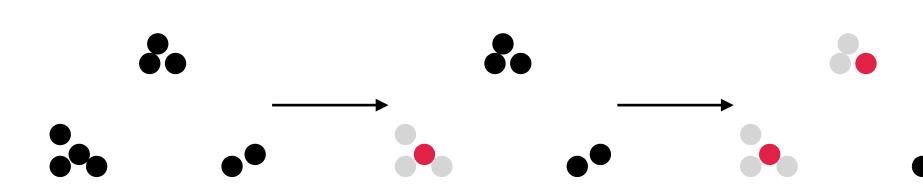
- Each new skeleton selection is aware of the previously selected skeleton subset
- By selecting according to the residual
- Common adaptive residual updates:
 - Gram-Schmidt (QR)
 - Gaussian elimination (LU)



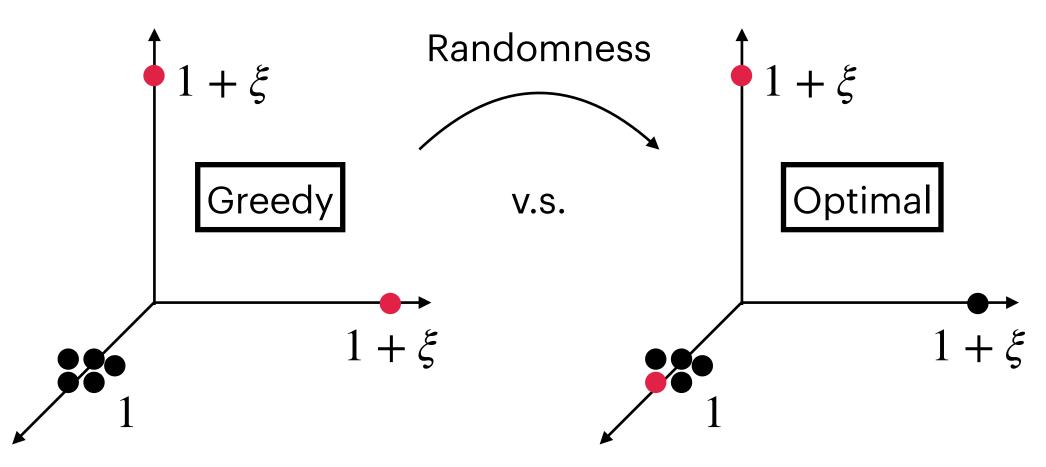
Adaptiveness & Randomness

Adaptiveness

- Each new skeleton selection is aware of the previously selected skeleton subset
- By selecting according to the residual
- Common adaptive residual updates:
 - Gram-Schmidt (QR)
 - Gaussian elimination (LU)



- **Randomness** (in contrast to greedy)
 - Intuition: balance exploitation with exploration
 - Effectively circumvent adversarial inputs for greedy methods
 - Achieve appealing skeleton complexities in expectation
 - Common randomness: sampling, sketching



Skeleton Selection: A General Framework

<u>A framework for (blockwise adaptive) skeleton seletion</u>

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau = (1 + \epsilon)\eta_r \in (0, 1)$
- $X^{(0)} \leftarrow X, S^{(0)} \leftarrow \emptyset, t \leftarrow 0$ while $\mathscr{C}(S^{(t)}) > \tau ||X||_F^2$ do

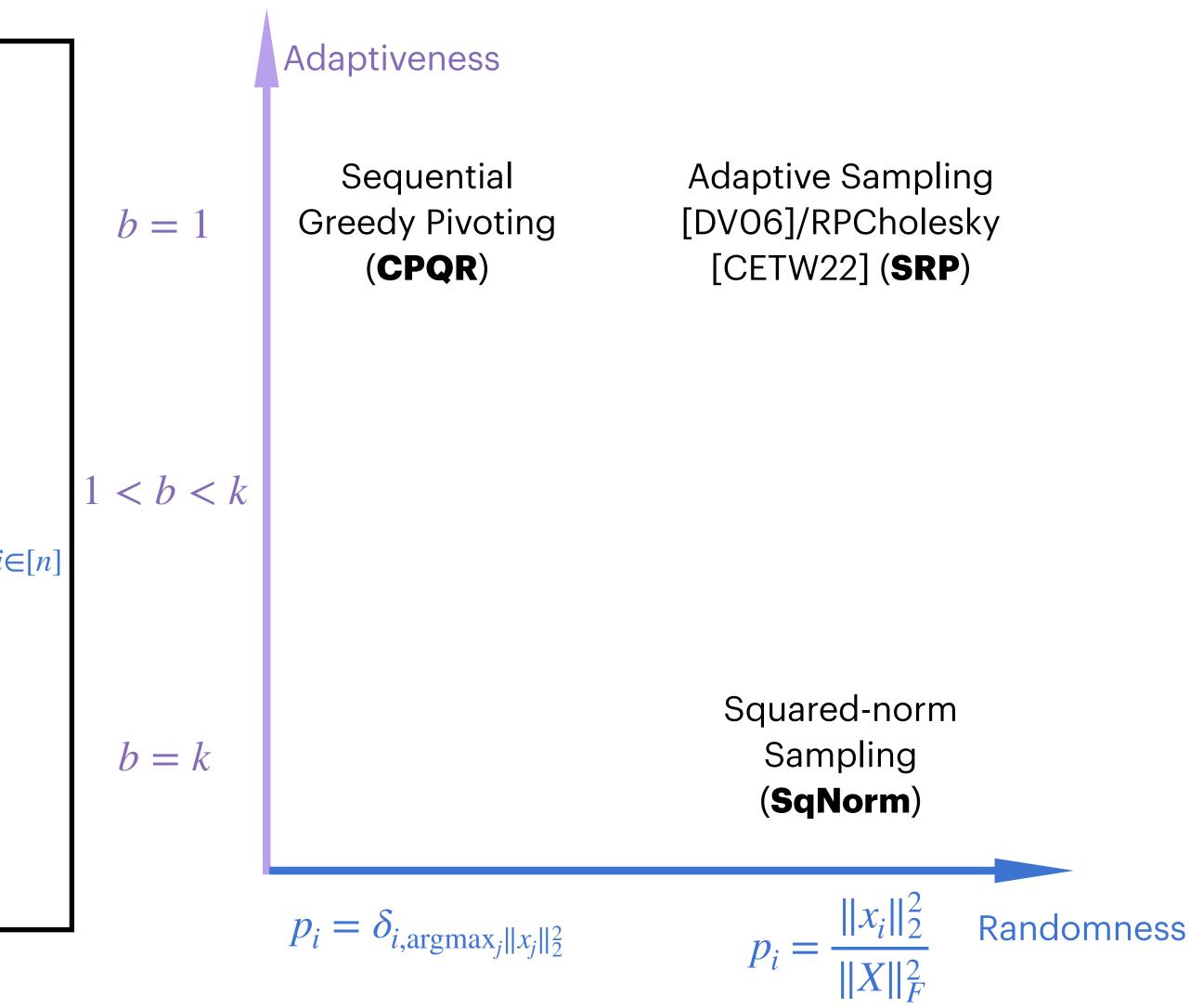
•
$$t \leftarrow t + 1$$

• Select $|S_t| = b$ skeletons S_t based on $\left(p_i(X^{(t-1)})\right)_{i \in [n]}$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S_t$$

• $X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X_{S_t}^{\dagger} X_{S_t} \right)$

• $S \leftarrow S^{(t)}, k = |S|$



Skeleton Selection: A General Framework

<u>A framework for (blockwise adaptive) skeleton seletion</u>

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau = (1 + \epsilon)\eta_r \in (0, 1)$
- $X^{(0)} \leftarrow X, S^{(0)} \leftarrow \emptyset, t \leftarrow 0$ while $\mathscr{C}(S^{(t)}) > \tau ||X||_F^2$ do

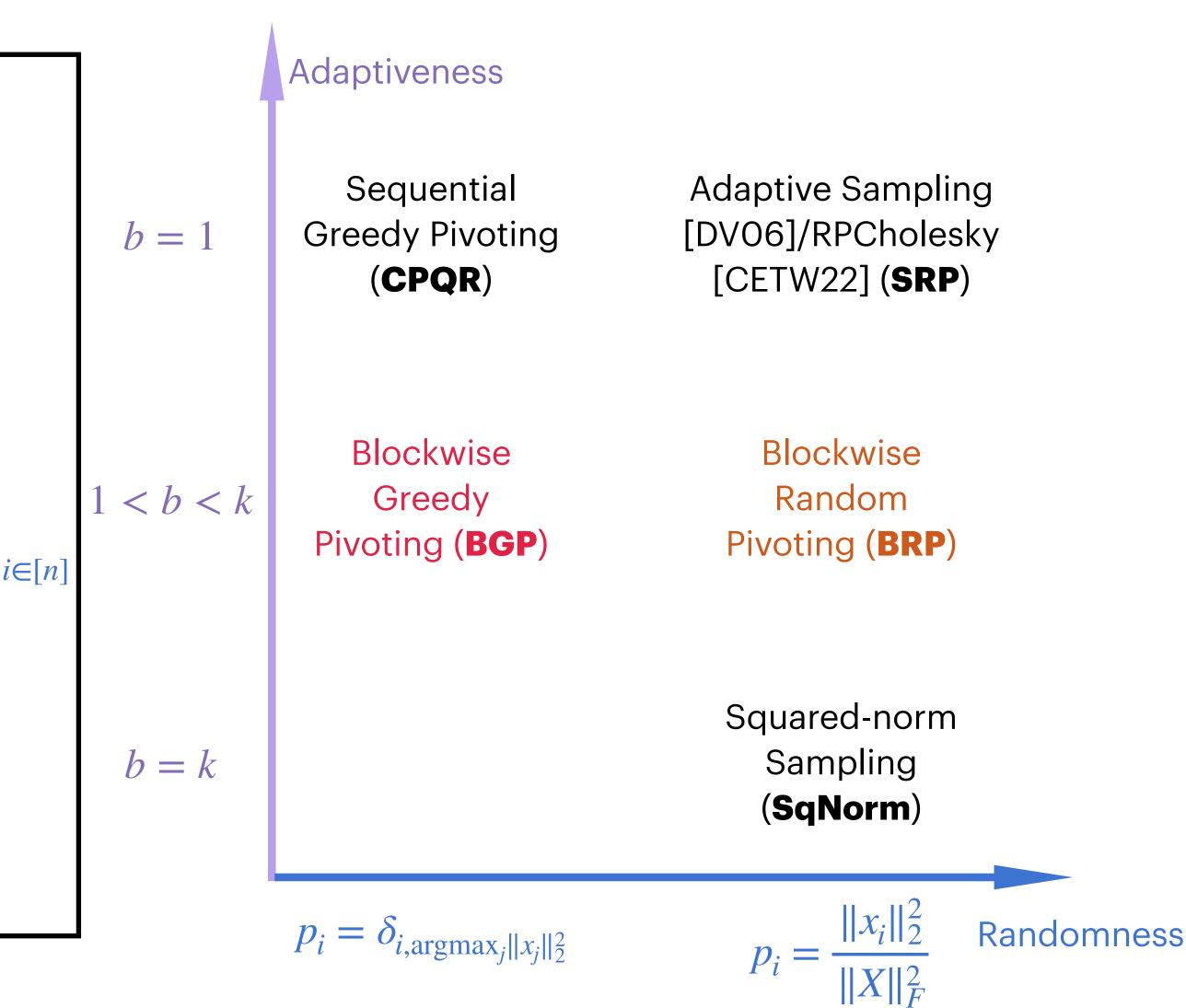
•
$$t \leftarrow t + 1$$

• Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S_t$$

• $X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X_{S_t}^{\dagger} X_{S_t} \right)$

• $S \leftarrow S^{(t)}, k = |S|$



Skeleton Selection: Other Methods

Sampling methods

DPP/volume sampling [HKPV06, BW09, DR10, KT11,

Pro: nearly optimal expected skeleton complexity: $k \ge -r + r - 1$ is sufficient for (r, ϵ) -ID in expectation

• Con: expensive to compute

Leverage score sampling [MD09, DMMW12]

- Pro: can be estimated efficiently for large-scale problems (e.g., tensor Khatri-Rao product)
- Con: expensive to compute
- **Uniform sampling** [CLMMPS15]
 - Pro: linear time
 - Con: require/depend on matrix incoherence

1	GS1	2]

Skeleton Selection: Other Methods

Sampling methods

• **DPP/volume sampling** [HKPV06, BW09, DR10, KT11, GS12]

• Pro: nearly optimal expected skeleton complexity: $k \ge \frac{r}{\epsilon} + r - 1$ is sufficient for (r, ϵ) -ID in expectation

• Con: expensive to compute

• Leverage score sampling [MD09, DMMW12]

- Pro: can be estimated efficiently for large-scale problems (e.g., tensor Khatri-Rao product)
- Con: expensive to compute
- Uniform sampling [CLMMPS15]
 - Pro: linear time
 - Con: require/depend on matrix incoherence

Sketchy pivoting

- Inputs: $X \in \mathbb{R}^{n \times d}$, $k \leq \operatorname{rank}(X)$,
- Draw JLT $\Omega \in \mathbb{R}^{d \times k}$ (e.g., $\Omega_{ij} \sim \mathcal{N}(0, 1/k)$ i.i.d.)
- Sketching $Y = X\Omega \in \mathbb{R}^{n \times k}$
- Greedy pivoting: for $t = 1, \dots, k$
 - Column (row) pivoted QR (**CPQR**) [VM17]: $s_t \leftarrow \underset{i}{\text{argmax}} ||Y_{i,:}^{(t-1)}||_2^2 + \text{Gram-Schmidt}$
 - LU with partial pivoting (**LUPP**) [**D**M23]: $s_t \leftarrow \underset{i}{\operatorname{argmax}} |Y_{i,t}^{(t-1)}| + \text{Gaussian Elimination}$
- Pro: fast, accurate, robust to adversarial inputs
- Con: require prior knowledge of k

ID Algorithms with Adaptiveness & Randomness

Randomness

Sampling: uniform, squared-norm, leverage score, volume/DPP, etc.

Adaptive sampling (random

pivoting): squared-norm sampling on QR residual

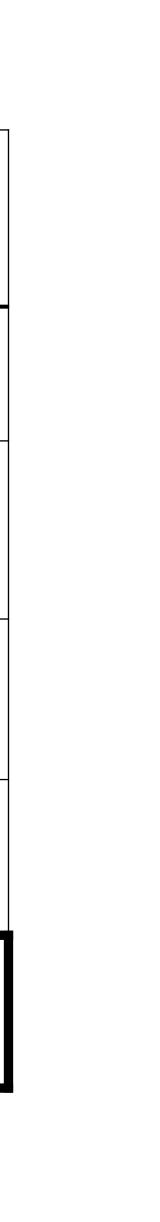
Sketchy pivoting: sketching + (greedy) pivoting

Greedy pivoting: columnpivoted QR (CPQR), (strong) rank-revealing QR, etc.

Adaptiveness

Algorithm	Skeleton Complexity	Asymp. Cost + Parallelizability	Error- reveal	ID- reveal
Greedy Pivoting	$k \ge (1 + (1 + \epsilon)\eta_r)n$	<i>O</i> (<i>ndk</i>) sequential		Exact
Squared- norm Sampling	$k \geq \frac{r-1}{\epsilon \eta_r} + \frac{1}{\epsilon}$	<i>O</i> (<i>nd</i>) parallel	×	Non
Random Pivoting	$k \ge k_{RP} := \frac{r}{\epsilon} + r \log\left(\min\left\{\frac{1}{\epsilon\eta_r}, \frac{2^{r+1}}{\epsilon}\right\}\right)$	<i>O</i> (<i>ndk</i>) sequential		Exact
Sketchy Pivoting	Conjecture: $k \gtrsim k_{RP}$	<i>O</i> (<i>ndk</i>) parallel	×	Inexact
RBRP	Conjecture: $k \gtrsim k_{RP}$	<i>O</i> (<i>ndk</i>) parallel		Exact
*	$\mathbf{V} = \frac{\ 2}{\ \ \mathbf{V}\ ^2}$ guartifies the relative	ontimal rank ranno	•	

* $\eta_r = \|X - X_{< r >}\|_F^2 / \|X\|_F^2$ quantifies the relative optimal rank-*r* approximation error of X



ID Algorithms with Adaptiveness & Randomness

Randomness

Sampling: uniform, squared-norm, leverage score, volume/DPP, etc.

Adaptive sampling (random

pivoting): squared-norm sampling on QR residual

Sketchy pivoting: sketching + (greedy) pivoting

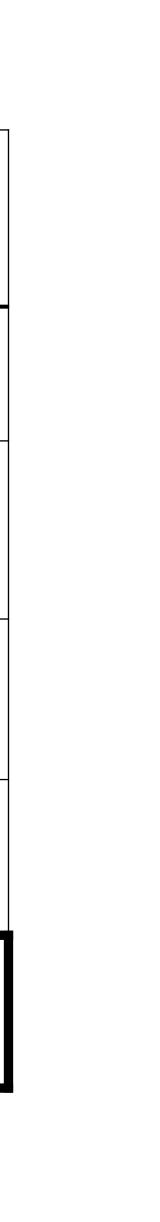
Greedy pivoting: columnpivoted QR (CPQR), (strong) rank-revealing QR, etc.

Adaptiveness

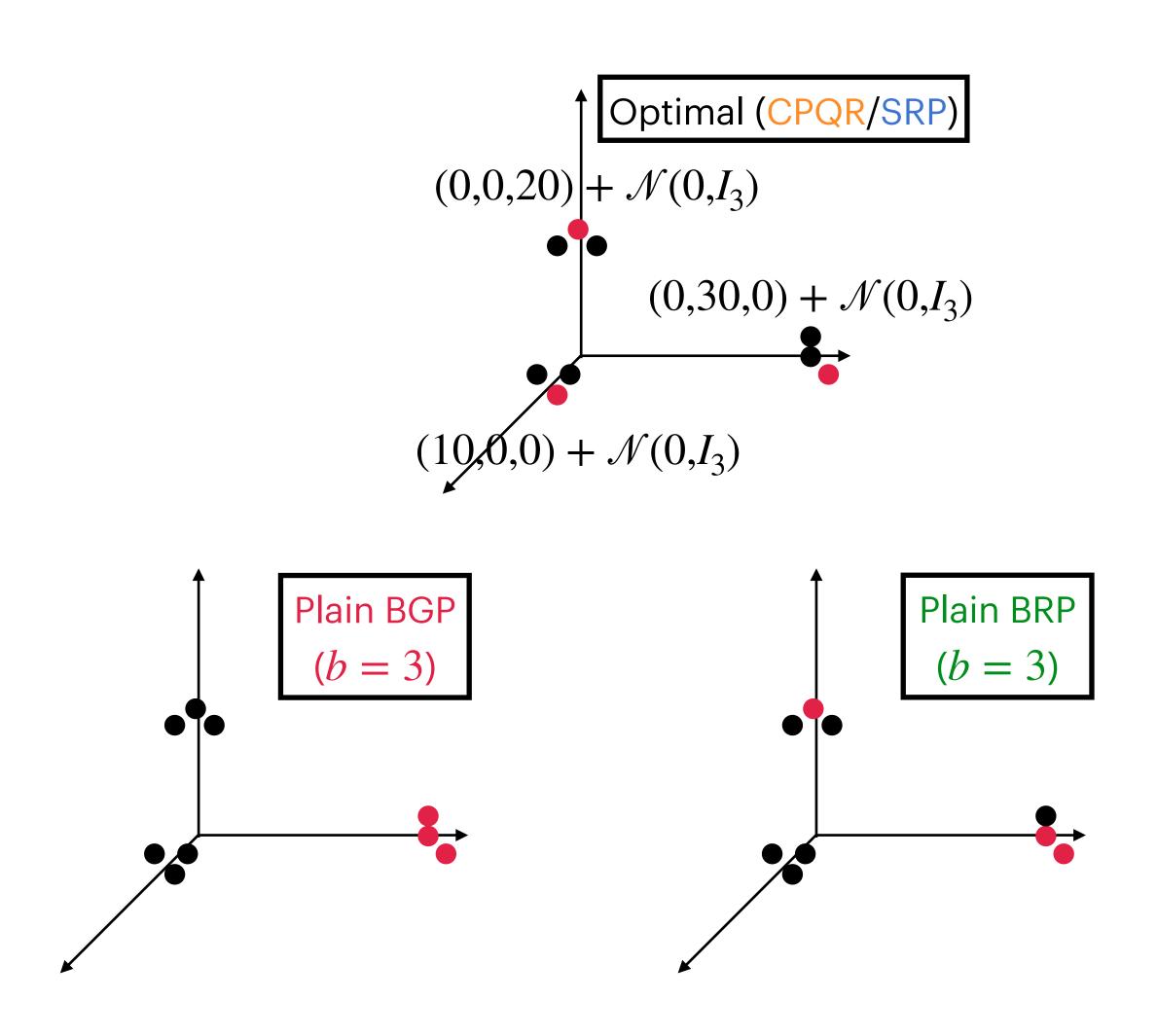
Algorithm	Skeleton Complexity	Asymp. Cost + Parallelizability	Error- reveal	ID- reveal
Greedy Pivoting	$k \ge (1 + (1 + \epsilon)\eta_r)n$	<i>O</i> (<i>ndk</i>) sequential		Exact
Squared- norm Sampling	$k \geq \frac{r-1}{\epsilon \eta_r} + \frac{1}{\epsilon}$	<i>O</i> (<i>nd</i>) parallel	×	Non
Random Pivoting	$k \ge k_{RP} := \frac{r}{\epsilon} + r \log \left(\min \left\{ \frac{1}{\epsilon \eta_r}, \frac{2^{r+1}}{\epsilon} \right\} \right)$	O(ndk) sequential		Exact
Sketchy Pivoting	Conjecture: $k \gtrsim k_{RP}$	<i>O</i> (<i>ndk</i>) parallel	×	Inexact
RBRP	Conjecture: $k \gtrsim k_{RP}$	O(ndk) parallel		Exact

* $\eta_r = \|X - X_{< r >}\|_F^2 / \|X\|_F^2$ quantifies the relative optimal rank-*r* approximation error of X

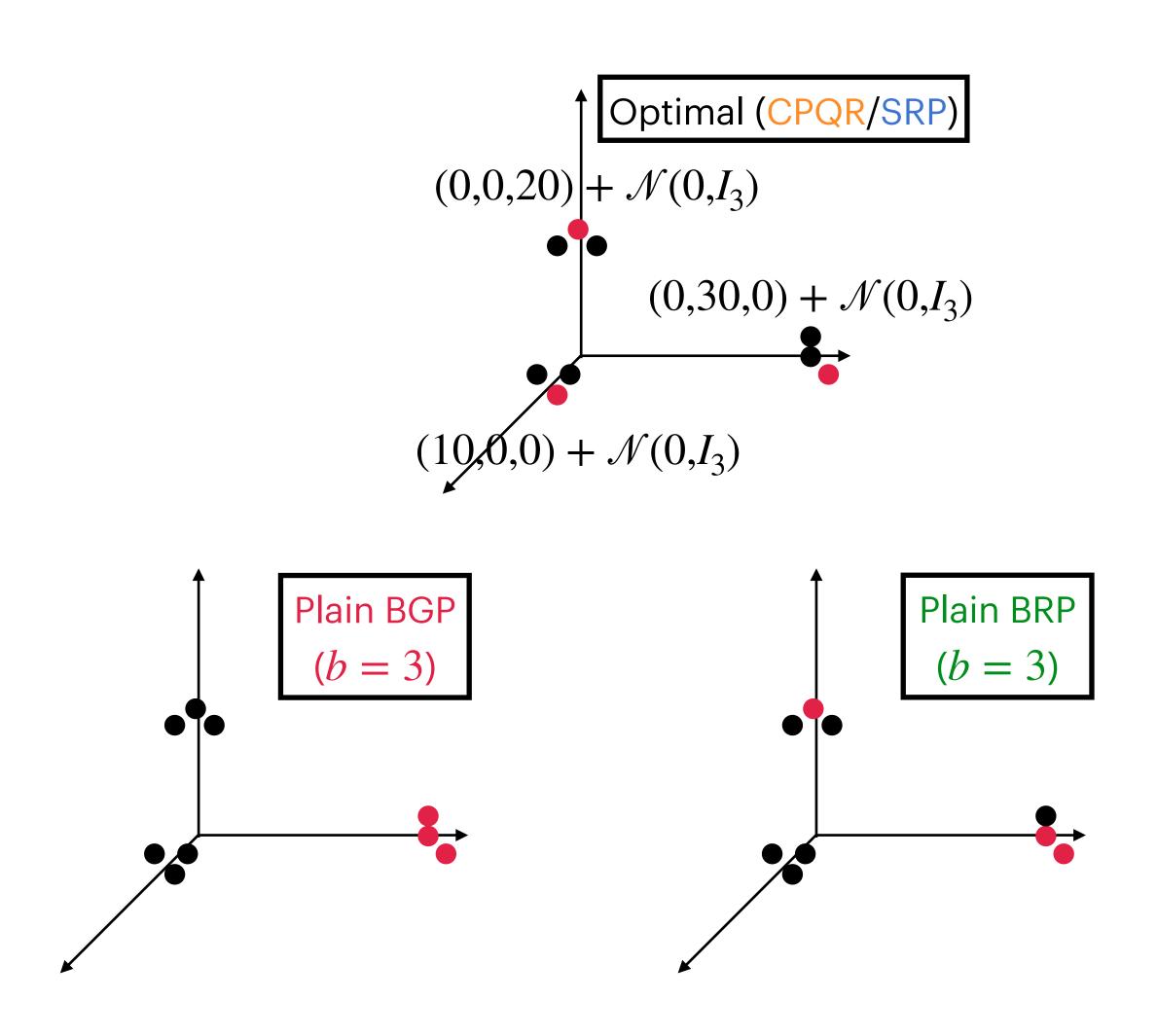
<u>Question</u>: How to parallelize random pivoting? <u>Answer</u>: Blockwise random pivoting

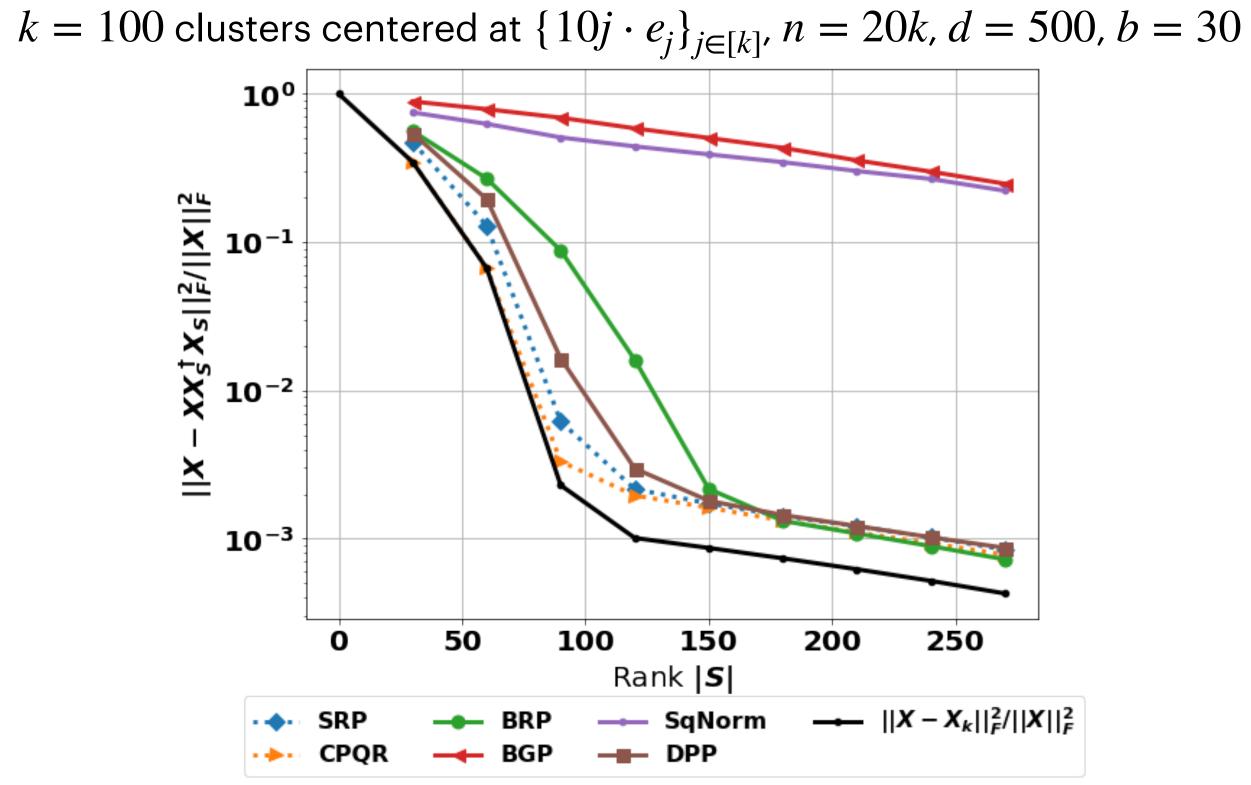


Pitfall of Plain Blockwise Greedy/Random Pivoting



Pitfall of Plain Blockwise Greedy/Random Pivoting





- Sequential pivoting (CPQR & SRP) is nearly optimal
- Plain blockwise pivoting (BRP/BGP, especially BGP) suffers from suboptimal skeleton complexities (up to b times)
- Squared-norm sampling (SqNorm) tends to fail

Robust Blockwise Random Pivoting

Robust Blockwise Random Pivoting (RBRP)

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau = (1 + \epsilon)\eta_r \in (0, 1)$
- $X^{(0)} \leftarrow X, S^{(0)} \leftarrow \emptyset, t \leftarrow 0$
- while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ $(t \leftarrow t+1)$ do
 - Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)_{i \in [n]}$

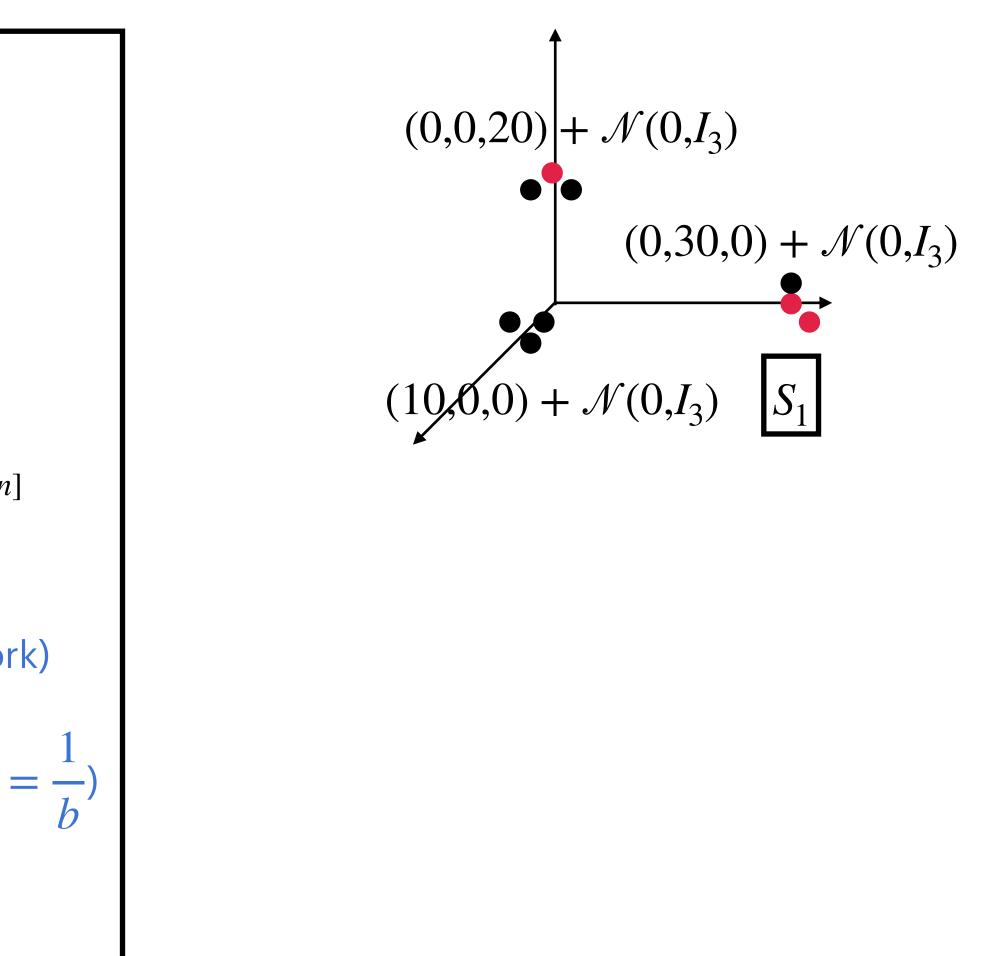
Robust blockwise filtering (RBF)

• $\pi \leftarrow \operatorname{CPQR}\left(X_{S_t}^{(t-1)}\right) \in S_b$ (SRP and CPQR both work)

• $\min_{S'_t = S_t(\pi(1:b'))} b' \text{ s.t. } \|X_{S_t} - X_{S'_t}\|_F^2 < \tau_b \|X_{S_t}\|_F^2 \text{ (e.g., } \tau_b = \frac{1}{h}\text{)}$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S'_t$$
 and $X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X^{\dagger}_{S'_t} X_{S'_t} \right)$

• $S \leftarrow S^{(t)}, k = |S|$



Robust Blockwise Random Pivoting

Robust Blockwise Random Pivoting (RBRP)

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau = (1 + \epsilon)\eta_r \in (0, 1)$
- $X^{(0)} \leftarrow X, S^{(0)} \leftarrow \emptyset, t \leftarrow 0$
- while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ $(t \leftarrow t+1)$ do
 - Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)_{i \in [n]}$

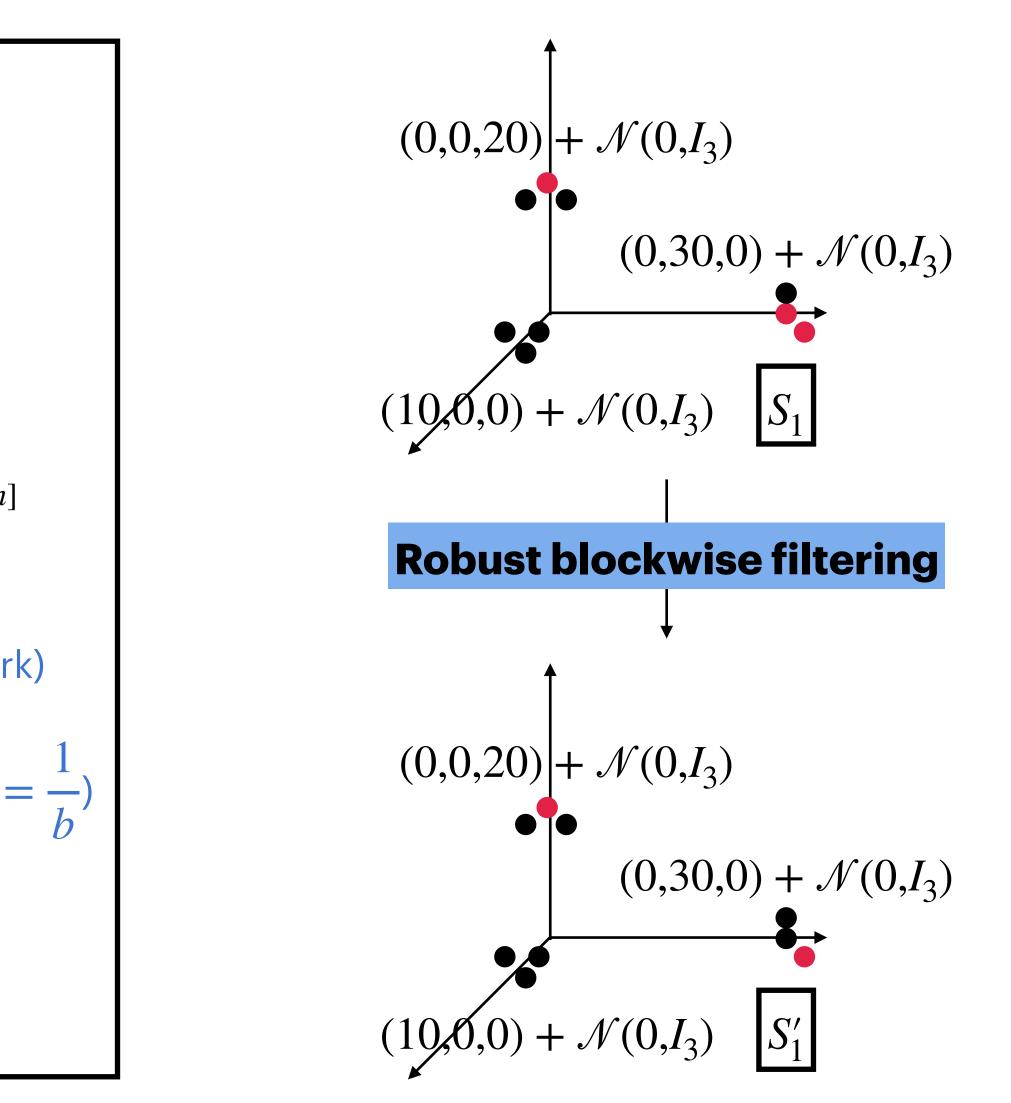
Robust blockwise filtering (RBF)

• $\pi \leftarrow \operatorname{CPQR}\left(X_{S_t}^{(t-1)}\right) \in S_b$ (SRP and CPQR both work)

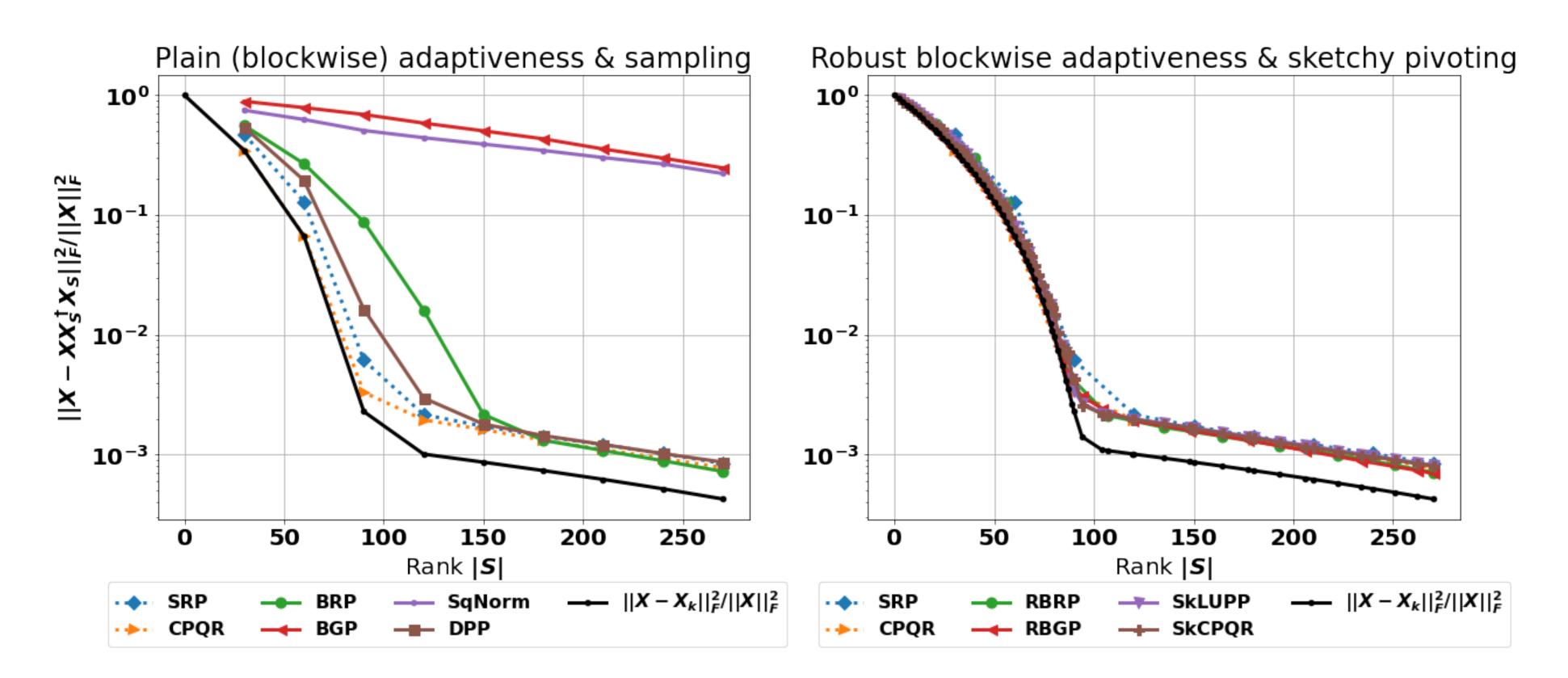
• $\min_{S'_t = S_t(\pi(1:b'))} b' \text{ s.t. } ||X_{S_t} - X_{S'_t}||_F^2 < \tau_b ||X_{S_t}||_F^2 \text{ (e.g., } \tau_b = \frac{1}{b}\text{)}$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S'_t$$
 and $X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X^{\dagger}_{S'_t} X_{S'_t} \right)$

• $S \leftarrow S^{(t)}, k = |S|$

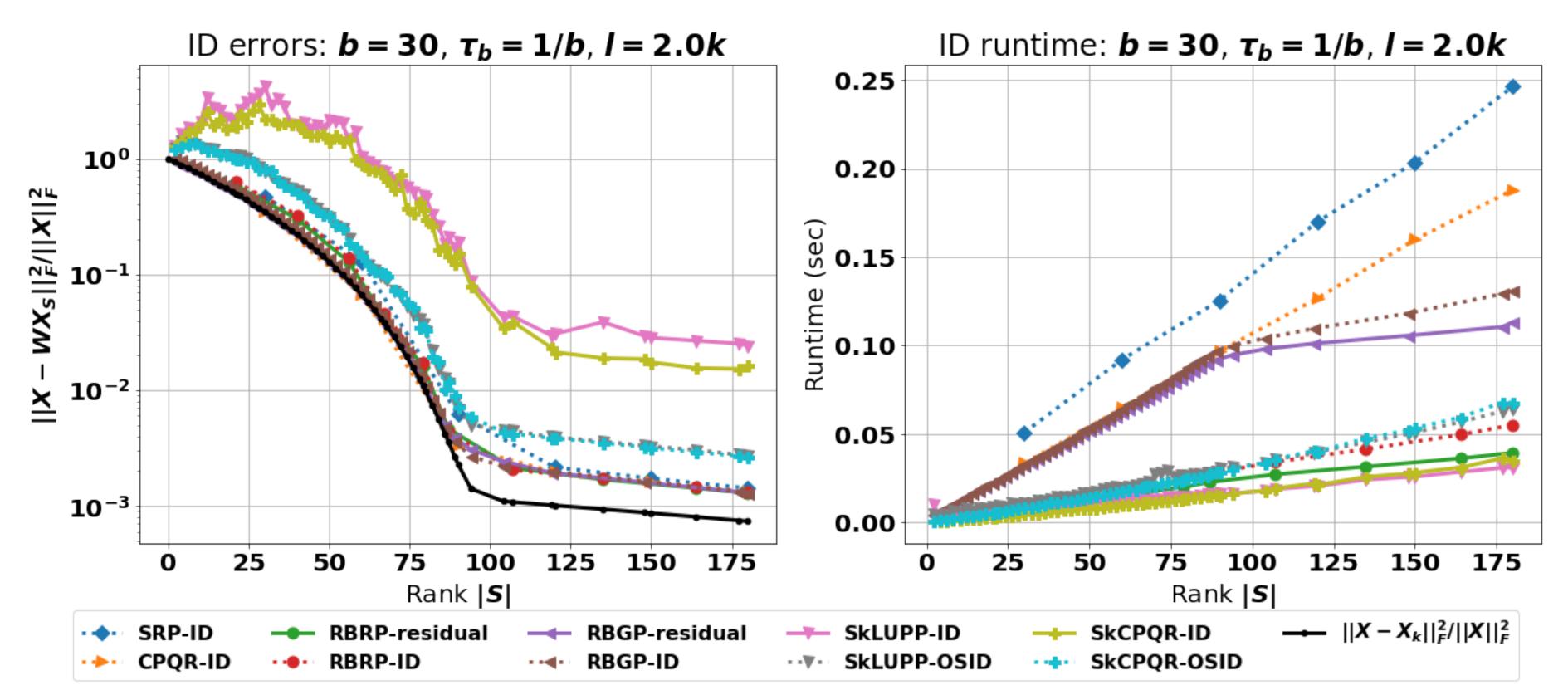


Robust Blockwise Random Pivoting: Robustness



• GMM with k = 100 clusters centered at $\{10j \cdot e_j\}_{j \in [k]}, \Sigma = I_d, n = 20k, d = 500, b = 30$ • Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities

Robust Blockwise Random Pivoting: Efficiency



- Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities

• RBGP tends to be slowed down much more significantly than RBRP by robust blockwise filtering • For ID: RBRP-ID is almost as fast as sketchy pivoting (SkLUPP-ID/SkCPQR-ID), while enjoying

much better interpolation error $\mathscr{C}_X(W|S) = \mathscr{C}_X(S)$ thanks to its exact-ID-revealing property.

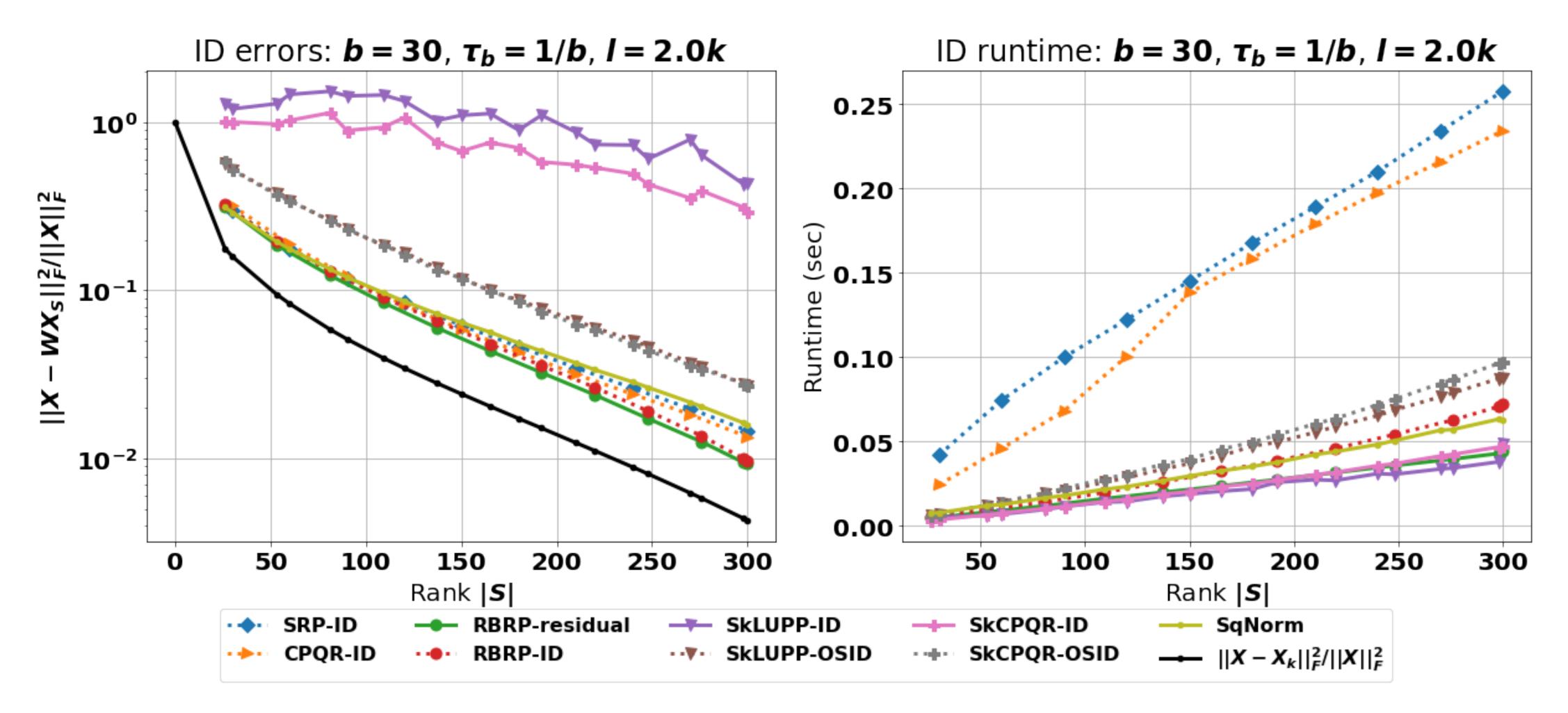
Exact- v.s. Inexact- ID-revealing Algorithms

Exact-ID-revealing algorithms

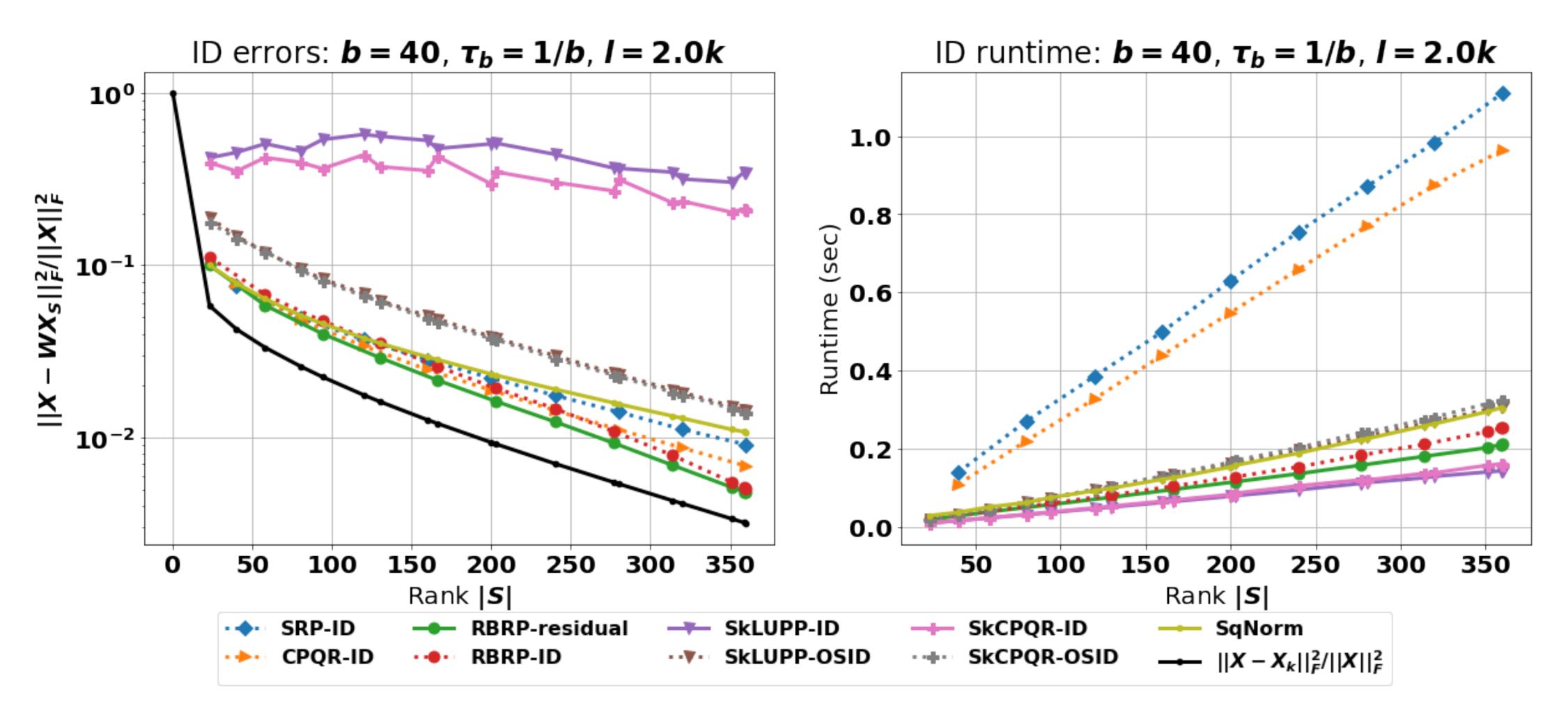
- Sequential/blockwise random/greedy pivoting algorithms (SRP, CPQR, BRP, BGP, RBRP, RBGP)
- The skeleton selection process generates sufficient information for solving the least square problem $\min_{W \in \mathbb{R}^{n \times k}} \|X - WX_S\|_F^2 \text{ in } O(nk^2) \text{ time}$
- **Inexact-ID-revealing algorithms**
 - Sketchy pivoting algorithms (SkLUPP, SkCPQR)
 - $\min_{W \in \mathbb{R}^{n \times k}} \|X\Omega WX_S\Omega\|_F^2 \text{ in } O(nk^2) \text{ time}$
 - Oversampled sketchy ID (**OSID**): for |S| = k
 - Sketching with oversampling $Y = X\Omega \in \mathbb{R}^{n \times l}$ such that l = O(k) \bullet
 - $W = YY_{c}^{\dagger}$ can be computed in $O(nlk) = O(nk^{2})$ time
 - Suboptimal interpolation error: $\mathscr{C}_X(W|S) \mathscr{C}_X(S) = O(k/l)$

• The skeleton selection process generates sufficient information for solving the **sketched** least square problem

More Numerical Comparisons: MNIST



More Numerical Comparisons: CIFAR-10



Summary

- A fast & accurate ID algorithm that finds $||X WX_S||_F^2 \le (1 + \epsilon) ||X X_{\langle r \rangle}||_F^2$
 - With nearly optimal skeleton complexity in practice
 - Computationally efficient in terms of both asymptotic complexity and parallelizability
 - **Error-revealing** without requiring prior knowledge of the target skeleton subset size
 - **Exact-ID-revealing** where the optimal interpolation matrix can be computed efficiently
- competitive skeleton complexity
- A critical challenge is to relax the sequential natural of adaptive selection
- scheme that achieves comparable skeleton complexity as its sequential counterpart

Combining adaptiveness and randomness is a key for designing robust skeleton selection algorithms with

We introduced **Robust Blockwise Random Pivoting (RBRP)**, a parallelizable blockwise adaptive selection

Thank You!

arXiv: https://arxiv.org/abs/2309.16002

GitHub: https://github.com/dyjdongyijun/ Robust Blockwise Random Pivoting