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• Low intrinsic dimension is ubiquitous in real world 

• Example: A language model with 341M parameters can be finetuned in a dimension-322 subspace with 
less than 6K samples [Aghajanyan-Zettlemoyer-Gupta-2020]  

• Learning under low intrinsic dimension with limited data, data selection becomes crucial

Low Intrinsic Dimension & Data Selection
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How to select informative data for learning under low intrinsic dimension? 

• Learning without noise: low-rank interpolative decomposition (ID) 

• Learning with noise: low-rank approximation (bias) + variance reduction
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Robust Blockwise Random Pivoting: 
Fast and Accurate Adaptive Interpolative Decomposition
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Interpolative Decomposition (ID)

• Given a data matrix  

• A target rank  

• An error tolerance  

• Aim to construct an ID of  ——  such that  

 

•  contains indices for a skeleton subset of size  (usually ) 

•  is the row skeleton submatrix corresponding to  

•  is an interpolation matrix for the given skeleton subset 

X = [x1, ⋯, xn]⊤ ∈ ℝn×d

1 ≤ r ≤ rank(X)

τ > 0

X X ≈ (XX†
S )XS

ℰ(S) = ∥X − (XX†
S )XS∥2

F ≤ τ∥X∥2
F

S = {s1, ⋯, sk} ⊆ [n] |S | = k k ≪ n

XS = [xs1
, ⋯, xsk

]⊤ ∈ ℝk×d S

W = XX†
S ∈ ℝn×k S

4

≈ W
n×k

XS
k×d

X
n×d



Adaptiveness & Randomness
• Adaptiveness 

• Each new skeleton selection is aware of the 
previously selected skeleton subset 

• By selecting according to the residual 

• Common adaptive residual updates: 

• Gram-Schmidt (QR) 

• Gaussian elimination (LU)

5
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• Randomness (in contrast to greedy) 

• Intuition: balance exploitation with exploration 

• Effectively circumvent adversarial inputs for 
greedy methods 

• Achieve appealing skeleton complexities in 
expectation 

• Common randomness: sampling, sketching
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Skeleton Selection: A General Framework

A framework for (blockwise adaptive) skeleton selection 

• Inputs: ,  

•  

• while  do 

•  

• Select  skeletons  based on 

 

•  

•  

•

X ∈ ℝn×d τ ∈ (0,1)

X(0) ← X, S(0) ← ∅, t ← 0

ℰ(S(t)) > τ∥X∥2
F

t ← t + 1

|St | = b St

(pi (X(t−1)))i∈[n]

S(t) ← S(t−1) ∪ St

X(t) ← X(t−1) (Id − X†
St

XSt)
S ← S(t), k = |S |
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pi =
∥xi∥2

2

∥X∥2
F

pi = δi,argmaxj∥xj∥2
2

Randomness
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Adaptive Sampling 
[Deshpande-Vempala-2006]/
RPCholesky [Chen-Epperly-
Tropp-Webber-2022] (SRP)
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Faster!



Skeleton Selection: Other Methods
Sketchy pivoting 

• Inputs: , ,  

• Draw JLT  (e.g.,  i.i.d.) 

• Sketching  

• Greedy pivoting: for  

• Row pivoted QR (CPQR) [Voronin-Martinsson-2017]: 
 + Gram-Schmidt 

• LU with partial pivoting (LUPP) [D-Martinsson-2023]: 
 + Gaussian Elimination 

• Pro: fast, accurate, robust to adversarial inputs 

• Con: require prior knowledge of 

X ∈ ℝn×d k ≤ rank(X)

Ω ∈ ℝd×k Ωij ∼ 𝒩(0,1/k)

Y = XΩ ∈ ℝn×k

t = 1,⋯, k

st ← argmax
i

∥Y(t−1)
i,: ∥2

2

st ← argmax
i

|Y(t−1)
i,t |

k

X

Sampling methods 

• DPP/volume sampling [Deshpande-Rademacher-
Vempala-Wang-2006, Belabbas-Wolfe-2009, etc.] 

• Pro: nearly optimal expected skeleton complexity 

• Con: expensive to compute  

• Leverage score sampling [Mahoney-Drineas-2009, 
Cohen-Musco-Musco-2017, etc.]  

• Pro: can be estimated efficiently for large-scale 
problems (e.g., tensor Khatri-Rao product) 

• Con: expensive to compute 

• Uniform sampling [Cohen-Lee-Musco-Musco-Peng-
Sidford-2015] 

• Pro: linear time 

• Con: require/depend on matrix incoherence



Pitfall of Plain Blockwise Greedy/Random Pivoting
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(0,0,20) + 𝒩(0,I3)

Optimal (CPQR/SRP)

(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

Plain BGP 
( )b = 3

Plain BRP 
( )b = 3

• Sequential pivoting (CPQR & SRP) is nearly optimal 

• Plain blockwise pivoting (BRP/BGP, especially BGP) suffers 
from suboptimal skeleton complexities (up to  times) 

• Squared-norm sampling (SqNorm) tends to fail

b

 clusters centered at , , , k = 100 {10j ⋅ ej}j∈[k] n = 20k d = 500 b = 30



Robust Blockwise Random Pivoting
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Robust Blockwise Random Pivoting (RBRP) 

• Inputs: ,  

•  

• while   ( ) do 

• Select  skeletons  based on  

• Robust blockwise filtering (RBF) 

•  (SRP and CPQR both work) 

•  (e.g., ) 

•  and  

•

X ∈ ℝn×d τ ∈ (0,1)

X(0) ← X, S(0) ← ∅, t ← 0

ℰ(S(t)) > τ∥X∥2
F t ← t + 1

|St | = b St (pi (X(t−1)))i∈[n]

π ← CPQR (X(t−1)
St ) ∈ Sb

min
S′ t=St(π(1:b′ ))

b′ s . t . ∥XSt
− XS′ t

∥2
F < τb∥XSt

∥2
F τb =

1
b

S(t) ← S(t−1) ∪ S′ t X(t) ← X(t−1) (Id − X†
S′ t

XS′ t)
S ← S(t), k = |S |

(0,0,20) + 𝒩(0,I3)

S1(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)



Robust Blockwise Random Pivoting
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Robust Blockwise Random Pivoting (RBRP) 

• Inputs: ,  

•  

• while   ( ) do 
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min
S′ t=St(π(1:b′ ))

b′ s . t . ∥XSt
− XS′ t

∥2
F < τb∥XSt

∥2
F τb =

1
b

S(t) ← S(t−1) ∪ S′ t X(t) ← X(t−1) (Id − X†
S′ t

XS′ t)
S ← S(t), k = |S |

(0,0,20) + 𝒩(0,I3)

S1(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

(0,0,20) + 𝒩(0,I3)

S′ 1(10,0,0) + 𝒩(0,I3)

(0,30,0) + 𝒩(0,I3)

Robust blockwise filtering



Robust Blockwise Random Pivoting: Efficiency

• GMM with  clusters centered at , , , ,  
• Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities 
• RBGP can be slowed down more significantly than RBRP by robust blockwise filtering

k = 100 {10j ⋅ ej}j∈[k] Σ = Id n = 20k d = 500 b = 30

9



Summary and Questions
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• Blockwise pivoting exploits the efficiency of Level-3 BLAS, bringing much better hardware 
efficiency than sequential pivoting 

• For adversarial inputs, plain blockwise pivoting can pick up redundant points 
• Robust Blockwise Random Pivoting (RBRP) leverages robust blockwise filtering (RBF), a 

local greedy filtering step with negligible additional cost, as an effective remedy for such 
vulnerability  

• Alternative to RBF, Epperly-Tropp-Webber-2024 showed that rejective sampling can also 
serve as a remedy for a closely related problem of Cholesky decomposition

https://arxiv.org/pdf/2410.03969
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• Blockwise pivoting exploits the efficiency of Level-3 BLAS, bringing much better hardware 
efficiency than sequential pivoting 

• For adversarial inputs, plain blockwise pivoting can pick up redundant points 
• Robust Blockwise Random Pivoting (RBRP) leverages robust blockwise filtering (RBF), a 

local greedy filtering step with negligible additional cost, as an effective remedy for such 
vulnerability  

• Alternative to RBF, Epperly-Tropp-Webber-2024 showed that rejective sampling can also 
serve as a remedy for a closely related problem of Cholesky decomposition

With the shared virtue of low intrinsic dimension, are there connections 
between ID and finetuning? 

Beyond low-rank approximation, are “redundant” points necessarily bad?

https://arxiv.org/pdf/2410.03969


Data Selection for Finetuning
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• Large full dataset ,  drawn i.i.d. from unknown distribution  

• Finetuning function class  with parameters  

• Pre-trained initialization  (without loss of generality) 

• Ground truth  such that  and 

X = [x1, ⋯, xN]⊤ ⊂ 𝒳N y = [y1, ⋯, yN] ∈ ℝN P

ℱ = {f( ⋅ ; θ) : 𝒳 → ℝ ∣ θ ∈ Θ} Θ ⊂ ℝr

0r ∈ ℝr

θ* ∈ Θ 𝔼[y ∣ x] = f(x; θ*) 𝕍[y ∣ x] ≤ σ2

Select a small coreset  of size  indexed by  such that: 

 

• Low-dimensional data selection: , (1) = linear regression ( ) 

• High-dimensional data selection: , (1) = ridge regression ( )

(XS, yS) ⊂ 𝒳n × ℝn n S ⊂ [N]

(1) θS = arg min
θ∈Θ

1
n

∥f(XS; θ) − yS∥2
2 + α∥θ∥2

2

r ≤ n α = 0

r > n α > 0



Finetuning falls in the Kernel Regime
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• Finetuning dynamics fall in the kernel regime:  

 

• With a suitable pre-trained initialization (i.e.  is close 
to ),  is small 

• Let  and , 
(1) is well approximated by: 

 

• Aim to control the excess risk  where 
 

• Let 

f(x; θ) ≈ f(x; 0r) + ∇θ f(x; 0r)⊤θ

f(⋅,0r)
f( ⋅ , θ*) ∥θ*∥2

G = ∇θ f(X; 0r) ∈ ℝN×r GS = ∇θ f(XS; 0r) ∈ ℝn×r

(2) θS = arg min
θ∈Θ

1
n

∥GSθ − (yS − f(XS; 0r))∥2
2 + α∥θ∥2

2

ER(θS) = ∥θS − θ*∥2
Σ

Σ = 𝔼x∼P[∇θ f(x; 0r)∇θ f(x; 0r)⊤] ∈ ℝr×r

ΣS = G⊤
S GS /n ⪰ 0

f( ⋅ ; θ*)

f( ⋅ ; 0r)

 is small∥θ*∥2
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ER(θS) = ∥θS − θ*∥2
Σ
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number of finetunable parameters 

(  in overparametrized regime)

r =

n < r



Qs: Are there connections between ID and finetuning?
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• In the noiseless setting , the generalization error is controlled by the bias: σ = 0

𝔼[ER(θS)] ≤ tr(Σ − ΣG†
S GS)∥θ*∥2

2

Low-rank approximation error of ID!
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• In the noiseless setting , the generalization error is controlled by the bias: σ = 0

𝔼[ER(θS)] ≤ tr(Σ − ΣG†
S GS)∥θ*∥2

2

Low-rank approximation error of ID!

• For a noiseless finetuning problem, accurate ID brings good data selection 

• In high-dimensional data selection, bias is controlled by the low-rank approximation error 

• Will see: learning with noise , “redundant” points are critical for variance reduction!σ > 0

Theorem (Variance-bias tradeoff): Given a coreset  of size , let  be the orthogonal projector 
onto any subspace , and . There exists  such that (2) satisfies 

S n P𝒮 ∈ ℝr×r

𝒮 ⊂ Range(ΣS) P⊥
𝒮 = Ir − P𝒮 α > 0

𝔼[ER(θS)] ≤ min
𝒮⊂Range(ΣS)

2σ2

n
tr(Σ(P𝒮ΣSP𝒮)†)

variance

+ 2tr(ΣP⊥
𝒮)∥θ*∥2

2

bias



Sketchy Moment Matching: Toward Fast and Provable 
Data Selection for Finetuning
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• Consider fixed design for simplicity:  

• Low-dimensional data selection:  such that  

• V(ariance)-optimality characterizes generalization: 

Σ = 𝔼x∼P[∇θ f(x; 0r)∇θ f(x; 0r)⊤] = G⊤G/N

rank(GS) = r ≤ n ΣS = G⊤
S GS /n ≻ 0

𝔼[ER(θS)] ≤
σ2

n
tr(ΣΣ−1

S )

In Low Dimension: Variance Reduction

15

Uniform sampling achieves nearly optimal sample complexity in low dimension: Assuming
 and . With probability ,  sampled uniformly from  satisfies 

 for any  when 

∥∇θ f( ⋅ ; 0r)∥2 ≤ B Σ ⪰ γIr ≥ 1 − δ XS X

Σ ⪯ cSΣS cS > 1 n ≳
B4

γ2(1 − c−1
S )2

(r + log(1/δ))
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Uniform sampling achieves nearly optimal sample complexity in low dimension: Assuming
 and . With probability ,  sampled uniformly from  satisfies 

 for any  when 

∥∇θ f( ⋅ ; 0r)∥2 ≤ B Σ ⪰ γIr ≥ 1 − δ XS X

Σ ⪯ cSΣS cS > 1 n ≳
B4

γ2(1 − c−1
S )2

(r + log(1/δ))

Can the low intrinsic dimension of fine-tuning be leveraged when  (  is low-rank)?r > n ΣS

Assumption (Low intrinsic dimension): For , let  
be the intrinsic dimension of the learning problem. Assume 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

Optimal rank-  
approximation 

(truncated SVD)

t



With Low Intrinsic Dimension: Variance + Bias

X

Assumption (Low intrinsic dimension): For , let  
be the intrinsic dimension of the learning problem. Assume 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

Optimal rank-  
approximation 

(truncated SVD)

t



With Low Intrinsic Dimension: Variance + Bias

X

Corollary (Exploitation + exploration): Given , for  with , if 

• Variance is controlled by exploiting information in :  for some ; and 

• Bias is controlled by exploring  for an informative : . Then, 

S ⊂ [N] 𝒮 ⊆ Range(ΣS) rank(P𝒮) ≍ r

𝒮 P𝒮(cSΣS − Σ)P𝒮 ⪰ 0 cS ≥ n/N

Range(Σ) 𝒮 tr(ΣP⊥
𝒮) ≤

N
n

tr(Σ − ⟨Σ⟩r)

𝔼[ER(θS)] ≤ variance + bias ≲
1
n

(cSσ2r + tr(Σ)∥θ*∥2
2)

Assumption (Low intrinsic dimension): For , let  
be the intrinsic dimension of the learning problem. Assume 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

Optimal rank-  
approximation 

(truncated SVD)

t
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be the intrinsic dimension of the learning problem. Assume 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

• Sample efficiency: With suitable selection of , the sample complexity of finetuning is linear in 
the intrinsic dimension , independent of the (potentially high) parameter dimension 

S ⊂ [N]
r r

Optimal rank-  
approximation 

(truncated SVD)

t
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be the intrinsic dimension of the learning problem. Assume 

Σ = G⊤G/N r = min{t ∈ [r] ∣ tr(Σ − ⟨Σ⟩t) ≤ tr(Σ)/N}
r ≪ min{N, r}

How to explore the intrinsic low-dimensional structure efficiently for data selection?

• Sample efficiency: With suitable selection of , the sample complexity of finetuning is linear in 
the intrinsic dimension , independent of the (potentially high) parameter dimension 

S ⊂ [N]
r r

Optimal rank-  
approximation 

(truncated SVD)

t



Explore Low Intrinsic Dimension: Gradient Sketching

16

• Gradient sketching: Randomly projecting the high-dimensional gradients  with 
 to a lower-dimension  via a Johnson-Lindenstrauss transform (JLT)  

•  Common JLT: a Gaussian random matrix with i.i.d entries 

G = ∇θ f(X; 0r) ∈ ℝN×r

r > n m = O(r) ≪ r Γ ∈ ℝr×m

Γij ∼ 𝒩(0,1/m)



Theorem (Gradient sketching): For Gaussian embedding  with , let  and 
. If the coreset  satisfies  and the -th largest eigenvalue 

, then with probability at least  over , there exists  such that 

 

• If  further satisfies  for some , with , 

Γ ∈ ℝr×m m ≥ 11r Σ̃ = Γ⊤ΣΓ
Σ̃ S = Γ⊤ΣSΓ S ⊂ [N] rank(ΣS) = n > m ⌈1.1r⌉
s⌈1.1r⌉(ΣS) ≥ γS > 0 0.9 Γ α > 0

𝔼[ER(θS)] ≲
σ2

n
tr( Σ̃ ( Σ̃ S)†)

variance

+
σ2

n
1

mγS
∥ Σ̃ ( Σ̃ S)†∥2tr(Σ)

sketching error

+
1
n

∥ Σ̃ ( Σ̃ S)†∥2tr(Σ)∥θ*∥2
2

bias

S Σ̃ ⪯ cS Σ̃ S cS ≥ n/N m = max{ tr(Σ)/γS,11r}

𝔼[ER(θS)] ≲
cS

n
(σ2m + tr(Σ)∥θ*∥2

2)
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• Gradient sketching: Randomly projecting the high-dimensional gradients  with 
 to a lower-dimension  via a Johnson-Lindenstrauss transform (JLT)  

•  Common JLT: a Gaussian random matrix with i.i.d entries 

G = ∇θ f(X; 0r) ∈ ℝN×r

r > n m = O(r) ≪ r Γ ∈ ℝr×m

Γij ∼ 𝒩(0,1/m)
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Relaxation of :  

•  

• Assume  commute such that imposing  
diagonal constraints is sufficient

Σ̃ ⪯ cS Σ̃ S

Σ̃ ⪯ cS Σ̃ S ⟺ V⊤( (̃G)⊤
S (̃G)S /n)V ⪰ Λ/cS

Σ, ΣS m

Gradient sketching 

• Draw a (fast) JLT (e.g. Gaussian random matrix)  

• Sketch the gradients  

Moment matching 

• Spectral decomposition  with 
,  

• Initialize  with  for  uniformly sampled 
 and  otherwise 

• Sample a size-  coreset  according to the distribution  
that solves the optimization problem 

 

Γ ∈ ℝr×m

G̃ = ∇θ f(X; 0r)Γ ∈ ℝN×m

Σ̃ = G̃ ⊤ G̃ /N = VΛV⊤

V = [v1, ⋯, vm] Λ = diag(λ1, ⋯, λm)

s = [s1, ⋯, sN] si = 1/n n
i ∈ [N] si = 0

n S ⊂ [N] s

min
s∈[0,1/n]N

min
γ=[γ1,⋯,γm]∈ℝm

m

∑
j=1

(v⊤
j G̃ ⊤diag(s) G̃ vj − γjλj)2

s.t. ∥s∥1 = 1, γj ≥ 1/cS ∀ j ∈ [m]

Control Variance: Sketchy Moment Matching (SkMM)
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Efficiency of SkMM: (recall ) 

• Gradient sketching is parallelizable with input-
sparsity time: for #nonzeros in  

• Gaussian embedding:  

• Fast JLT (sparse sign):  

• Moment matching takes  for spectral 
decomposition. The optimization takes  
per iteration

m ≪ min{N, r}

nnz(G) = G

O(nnz(G)m)

O(nnz(G)log m)

O(m3)
O(Nm)
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• Moment matching takes  for spectral 
decomposition. The optimization takes  
per iteration

m ≪ min{N, r}

nnz(G) = G

O(nnz(G)m)

O(nnz(G)log m)
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Select  of size  that 
reduces the sketched V-optimality: 

S ⊂ [N] |S | = n

tr( Σ̃ ( Σ̃ S)†)



SkMM on Synthetic Data: Regression
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Synthetic high-dimensional linear probing 

• Gaussian mixture model (GMM)  

• ,  

•  well separated clusters of random sizes 

• Grid search for the nearly optimal 

G ∈ ℝN×r

N = 2000 r = 2400 > N

r = 8

α > 0

Baselines 

• Herding 

• Uniform sampling 

• K-center greedy 

• Adaptive sampling/random pivoting 

• T(runcated)/R(idge) leverage score sampling



SkMM on Synthetic Data: Regression
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SkMM simultaneously controls variance and bias

20

Bias reductionn3 = 3

n1 = 3
n2 = 3

Variance reductionn3 = 0

n1 = 3
n2 = 6
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Bias reductionn3 = 3

n1 = 3
n2 = 3

Variance reductionn3 = 0

n1 = 3
n2 = 6

Gradient sketching:

Bias reduction via 𝒮

𝒮

Moment matching: 
Variance reduction in 𝒮

n3 = 1

n1 = 3
n2 = 5

𝒮



SkMM for Classification: Linear Probing (LP)

X

StanfordCar dataset 

•  imbalanced classes 

•  images 

Linear probing (LP) 

• CLIP-pre-trained ViT 

•  

Last-two-layer finetuning (FT) 

• ImageNet-pre-trained ResNet18 

•

196

N = 16,185

r = 100,548

r = 2,459,844
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Takeaways

X

• A rigorous generalization analysis on data selection for finetuning 

• Low-dimensional data selection: variance reduction (V-optimality) 

• High-dimensional data selection: variance-bias tradeoff 

• Gradient sketching provably finds a low-dimensional parameter subspace  with small bias 

• Reducing variance over  preserves the fast-rate generalization  

• SkMM — a scalable two-stage data selection method for finetuning that simultaneously  

• Explores the high-dimensional parameter space via gradient sketching and  

• Exploits the information in the low-dimensional subspace via moment matching

𝒮

𝒮 O(dim(𝒮)/n)
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