Data Selection under Low Intrinsic Dimension: from Interpolatove Decomposition to Ridge Regression

- **Yijun Dong**
- **Courant Institute of Mathematical Sciences, New York University**
 - Joint Mathematics Meeting, Jan 11, 2025

Center for Data Science

FOR **ODEN** COMPUTATIONAL ENGINEERING & SCIENCES

Low Intrinsic Dimension & Data Selection

- Low intrinsic dimension is ubiquitous in real world
 - less than 6K samples [Aghajanyan-Zettlemoyer-Gupta-2020]
- Learning under low intrinsic dimension with limited data, data selection becomes crucial

Example: A language model with 341M parameters can be finetuned in a dimension-322 subspace with

Low Intrinsic Dimension & Data Selection

- Low intrinsic dimension is ubiquitous in real world
 - less than 6K samples [Aghajanyan-Zettlemoyer-Gupta-2020]
- Learning under low intrinsic dimension with limited data, data selection becomes crucial

How to **select informative data** for learning under **low intrinsic dimension**?

- Learning <u>without noise</u>: low-rank interpolative decomposition (ID)

Example: A language model with 341M parameters can be finetuned in a dimension-322 subspace with

Learning with noise: low-rank approximation (bias) + variance reduction

Robust Blockwise Random Pivoting: Fast and Accurate Adaptive Interpolative Decomposition

Chao Chen NCSU Per-Gunnar Martinsson UT Austin

Katherine Pearce UT Austin

Interpolative Decomposition (ID)

- Given a data matrix $X = [x_1, \dots, x_n]^\top \in \mathbb{R}^{n \times d}$
- A target rank $1 \le r \le \operatorname{rank}(X)$
- An error tolerance $\tau > 0$
- Aim to construct an ID of $X X \approx (XX_S^{\dagger})X_S$ such that $\mathscr{E}(S) = \|X - (XX_{S}^{\dagger})X_{S}\|_{F}^{2} \le \tau \|X\|_{F}^{2}$
 - $S = \{s_1, \dots, s_k\} \subseteq [n]$ contains indices for a skeleton subset of size |S| = k (usually $k \ll n$)
 - $X_S = [x_{S_1}, \dots, x_{S_k}]^\top \in \mathbb{R}^{k \times d}$ is the row skeleton submatrix corresponding to S
 - $W = XX_{\varsigma}^{\dagger} \in \mathbb{R}^{n \times k}$ is an interpolation matrix for the given skeleton subset S

Adaptiveness & Randomness

• Adaptiveness

- Each new skeleton selection is aware of the previously selected skeleton subset
- By selecting according to the residual
- Common adaptive residual updates:
 - Gram-Schmidt (QR)
 - Gaussian elimination (LU)

Adaptiveness & Randomness

• Adaptiveness

- Each new skeleton selection is aware of the previously selected skeleton subset
- By selecting according to the residual
- Common adaptive residual updates:
 - Gram-Schmidt (QR)
 - Gaussian elimination (LU)

- Randomness (in contrast to greedy)
 - Intuition: balance exploitation with exploration
 - Effectively circumvent adversarial inputs for greedy methods
 - Achieve appealing skeleton complexities in expectation
 - Common randomness: sampling, sketching

Skeleton Selection: A General Framework

A framework for (blockwise adaptive) skeleton selection

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau \in (0,1)$
- $X^{(0)} \leftarrow X, \ S^{(0)} \leftarrow \emptyset, \ t \leftarrow 0$ while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ do

•
$$t \leftarrow t + 1$$

• Select $|S_t| = b$ skeletons S_t based on

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S_t$$

•
$$X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X_{S_t}^{\dagger} X_{S_t} \right)$$

 $S \leftarrow S^{(t)}, k = |S|$

Skeleton Selection: A General Framework

<u>A framework for (blockwise adaptive) skeleton selection</u>

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau \in (0,1)$
- $X^{(0)} \leftarrow X, \ S^{(0)} \leftarrow \emptyset, \ t \leftarrow 0$ while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ do

•
$$t \leftarrow t + 1$$

• Select $|S_t| = b$ skeletons S_t based on $p_{i}(X^{(t-1)})$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S_t$$

•
$$X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X_{S_t}^{\dagger} X_{S_t} \right)$$

 $S \leftarrow S^{(t)}, k = |S|$

Skeleton Selection: A General Framework

A framework for (blockwise adaptive) skeleton selection

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau \in (0,1)$
- $X^{(0)} \leftarrow X, \ S^{(0)} \leftarrow \emptyset, \ t \leftarrow 0$ while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ do

•
$$t \leftarrow t + 1$$

• Select $|S_t| = b$ skeletons S_t based on $p_i(X^{(t-1)})$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S_t$$

•
$$X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X_{S_t}^{\dagger} X_{S_t} \right)$$

 $S \leftarrow S^{(t)}, k = |S|$

Skeleton Selection: Other Methods

Sampling methods

- **DPP/volume sampling** [Deshpande-Rademacher-Vempala-Wang-2006, Belabbas-Wolfe-2009, etc.]
 - Pro: nearly optimal expected skeleton complexity
 - Con: expensive to compute
- Leverage score sampling [Mahoney-Drineas-2009, Cohen-Musco-Musco-2017, etc.]
 - Pro: can be estimated efficiently for large-scale problems (e.g., tensor Khatri-Rao product)
 - Con: expensive to compute
- Uniform sampling [Cohen-Lee-Musco-Musco-Peng-Sidford-2015]
 - Pro: linear time
 - Con: require/depend on matrix incoherence

Sketchy pivoting

- Inputs: $X \in \mathbb{R}^{n \times d}$, $k \leq \operatorname{rank}(X)$,
- Draw JLT $\Omega \in \mathbb{R}^{d \times k}$ (e.g., $\Omega_{ij} \sim \mathcal{N}(0, 1/k)$ i.i.d.)
- Sketching $Y = X\Omega \in \mathbb{R}^{n \times k}$
- Greedy pivoting: for $t = 1, \dots, k$
 - Row pivoted QR (**CPQR**) [Voronin-Martinsson-2017]: $s_t \leftarrow \underset{i}{\text{argmax}} \|Y_{i,:}^{(t-1)}\|_2^2 + \text{Gram-Schmidt}$
 - LU with partial pivoting (**LUPP**) [D-Martinsson-2023]: $s_t \leftarrow \underset{i}{\text{argmax}} |Y_{i,t}^{(t-1)}| + \text{Gaussian Elimination}$
- Pro: fast, accurate, robust to adversarial inputs
- Con: require prior knowledge of k

Pitfall of Plain Blockwise Greedy/Random Pivoting

- Sequential pivoting (CPQR & SRP) is nearly optimal
- Plain blockwise pivoting (BRP/BGP, especially BGP) suffers from suboptimal skeleton complexities (up to b times)
- Squared-norm sampling (SqNorm) tends to fail

Robust Blockwise Random Pivoting

Robust Blockwise Random Pivoting (RBRP)

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau \in (0,1)$
- $X^{(0)} \leftarrow X, \ S^{(0)} \leftarrow \emptyset, \ t \leftarrow 0$
- while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ $(t \leftarrow t+1)$ do
 - Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)_{i \in [n]}$

Robust blockwise filtering (RBF)

• $\pi \leftarrow \operatorname{CPQR}\left(X_{S_t}^{(t-1)}\right) \in S_b$ (SRP and CPQR both work)

• $\min_{S'_t = S_t(\pi(1:b'))} b' \text{ s.t. } \|X_{S_t} - X_{S'_t}\|_F^2 < \tau_b \|X_{S_t}\|_F^2 \text{ (e.g., } \tau_b = \frac{1}{b})$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S'_t$$
 and $X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X^{\dagger}_{S'_t} X_{S'_t} \right)$

• $S \leftarrow S^{(t)}, k = |S|$

Robust Blockwise Random Pivoting

Robust Blockwise Random Pivoting (RBRP)

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau \in (0,1)$
- $X^{(0)} \leftarrow X, \ S^{(0)} \leftarrow \emptyset, \ t \leftarrow 0$
- while $\mathscr{C}(S^{(t)}) > \tau \|X\|_F^2$ $(t \leftarrow t+1)$ do
 - Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)_{i \in [n]}$

Robust blockwise filtering (RBF)

• $\pi \leftarrow \operatorname{CPQR}\left(X_{S_t}^{(t-1)}\right) \in S_b$ (SRP and CPQR both work)

• $\min_{S'_t = S_t(\pi(1:b'))} b' \text{ s.t. } ||X_{S_t} - X_{S'_t}||_F^2 < \tau_b ||X_{S_t}||_F^2 \text{ (e.g., } \tau_b = \frac{1}{b})$

•
$$S^{(t)} \leftarrow S^{(t-1)} \cup S'_t$$
 and $X^{(t)} \leftarrow X^{(t-1)} \left(I_d - X^{\dagger}_{S'_t} X_{S'_t} \right)$

• $S \leftarrow S^{(t)}, k = |S|$

Robust Blockwise Random Pivoting: Efficiency

- Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities
- RBGP can be slowed down more significantly than RBRP by robust blockwise filtering

• GMM with k = 100 clusters centered at $\{10j \cdot e_j\}_{j \in [k]}, \Sigma = I_d, n = 20k, d = 500, b = 30$

Summary and Questions

- efficiency than sequential pivoting
- For adversarial inputs, plain blockwise pivoting can pick up redundant points
- vulnerability
- serve as a remedy for a closely related problem of Cholesky decomposition

Blockwise pivoting exploits the efficiency of Level-3 BLAS, bringing much better hardware

Robust Blockwise Random Pivoting (RBRP) leverages robust blockwise filtering (RBF), a local greedy filtering step with negligible additional cost, as an effective remedy for such

Alternative to RBF, <u>Epperly-Tropp-Webber-2024</u> showed that rejective sampling can also

Summary and Questions

- efficiency than sequential pivoting
- For adversarial inputs, plain blockwise pivoting can pick up redundant points
- vulnerability
- serve as a remedy for a closely related problem of Cholesky decomposition

With the shared virtue of **low intrinsic dimension**, are there connections between ID and finetuning?

Beyond low-rank approximation, are "redundant" points necessarily bad?

Blockwise pivoting exploits the efficiency of Level-3 BLAS, bringing much better hardware

Robust Blockwise Random Pivoting (RBRP) leverages robust blockwise filtering (RBF), a local greedy filtering step with negligible additional cost, as an effective remedy for such

Alternative to RBF, <u>Epperly-Tropp-Webber-2024</u> showed that rejective sampling can also

Data Selection for Finetuning

- Large full dataset $X = [x_1, \dots, x_N]^\top \subset \mathcal{X}^N$, $y = [y_1, \dots, y_N] \in \mathbb{R}^N$ drawn i.i.d. from unknown distribution P
- Finetuning function class $\mathscr{F} = \{f(\cdot; \theta) : \mathscr{X} \to \mathbb{R} \mid \theta \in \Theta\}$ with parameters $\Theta \subset \mathbb{R}^r$
- Pre-trained initialization $0_r \in \mathbb{R}^r$ (without loss of generality)
- Ground truth $\theta_* \in \Theta$ such that $\mathbb{E}[y \mid x] = f(x; \theta_*)$ and $\mathbb{V}[y \mid x] \leq \sigma^2$

Select a small coreset $(X_S, y_S) \subset \mathcal{X}^n$

- (1) $\theta_S = \arg\min_{\theta \in \Theta}$
- Low-dimensional data selection:
- High-dimensional data selection

×
$$\mathbb{R}^n$$
 of size *n* indexed by $S \subset [N]$ such that:

$$\frac{1}{n} ||f(X_S; \theta) - y_S||_2^2 + \alpha ||\theta||_2^2$$
 $r \le n, (1) = \text{linear regression } (\alpha = 0)$
on: $r > n, (1) = \text{ridge regression } (\alpha > 0)$

Finetuning falls in the Kernel Regime

Finetuning dynamics fall in the kernel regime:

$$f(x;\theta) \approx f(x;0_r) + \nabla_{\theta} f(x;0_r)^{\mathsf{T}} \theta$$

- With a suitable pre-trained initialization (i.e. $f(\cdot,0_r)$ is close to $f(\cdot, \theta_*)$), $\|\theta_*\|_2$ is small
- Let $G = \nabla_{\theta} f(X; 0_r) \in \mathbb{R}^{N \times r}$ and $G_S = \nabla_{\theta} f(X_S; 0_r) \in \mathbb{R}^{n \times r}$, (1) is well approximated by:

(2)
$$\theta_S = \arg\min_{\theta \in \Theta} \frac{1}{n} ||G_S \theta - (y_S - f(X_S; 0_r))||$$

- Aim to control the excess risk $\text{ER}(\theta_S) = \|\theta_S \theta_*\|_{\Sigma}^2$ where $\Sigma = \mathbb{E}_{x \sim P} [\nabla_{\theta} f(x; 0_r) \nabla_{\theta} f(x; 0_r)^{\mathsf{T}}] \in \mathbb{R}^{r \times r}$
- Let $\Sigma_S = G_S^\top G_S / n \ge 0$

 $\|_{2}^{2} + \alpha \|\theta\|_{2}^{2}$

Finetuning falls in the Kernel Regime

Finetuning dynamics fall in the **kernel regime**:

$$f(x;\theta) \approx f(x;0_r) + \nabla_{\theta} f(x;0_r)^{\mathsf{T}} \theta$$

- With a suitable pre-trained initialization (i.e. $f(\cdot,0_r)$ is close to $f(\cdot, \theta_*)$), $\|\theta_*\|_2$ is small
- Let $G = \nabla_{\theta} f(X; 0_r) \in \mathbb{R}^{N \times r}$ and $G_S = \nabla_{\theta} f(X_S; 0_r) \in \mathbb{R}^{n \times r}$, (1) is well approximated by:

(2)
$$\theta_S = \arg\min_{\theta \in \Theta} \frac{1}{n} ||G_S \theta - (y_S - f(X_S; 0_r))||$$

- Aim to control the excess risk $\text{ER}(\theta_S) = \|\theta_S \theta_*\|_{\Sigma}^2$ where $\Sigma = \mathbb{E}_{x \sim P} [\nabla_{\theta} f(x; 0_r) \nabla_{\theta} f(x; 0_r)^{\mathsf{T}}] \in \mathbb{R}^{r \times r}$
- Let $\Sigma_S = G_S^\top G_S / n \ge 0$

Qs: Are there connections between ID and finetuning?

- In the **noiseless setting** $\sigma = 0$, the generalization error is controlled by the bias:

Low-rank approximation error of ID!

 $\mathbb{E}[\mathrm{ER}(\theta_S)] \leq \left[\mathrm{tr}(\Sigma - \Sigma G_S^{\dagger} G_S) \| \theta_* \|_2^2 \right]$

Qs: Are there connections between ID and finetuning?

- In the noiseless setting $\sigma = 0$, the generalization error is controlled by the bias:
 - $\mathbb{E}[\mathrm{ER}(\theta_S)] \leq$

Low-rank approximation error of ID!

<u>Theorem (Variance-bias tradeoff)</u>: Given a coreset S of size n, let $P_{S} \in \mathbb{R}^{r \times r}$ be the orthogonal projector onto any subspace $\mathcal{S} \subset \text{Range}(\Sigma_S)$, and $P_{\mathcal{S}}^{\perp} = I_r - P_{\mathcal{S}}$. There exists $\alpha > 0$ such that (2) satisfies $\mathbb{E}[\mathrm{ER}(\theta_{S})] \leq \min_{\substack{\mathcal{S} \subset \mathrm{Range}(\Sigma_{S})}} \frac{2\sigma^{2}}{n}$

- For a noiseless finetuning problem, accurate ID brings good data selection

$$\operatorname{tr}(\Sigma - \Sigma G_S^{\dagger} G_S) \|\theta_*\|_2^2$$

$$-\operatorname{tr}(\Sigma(P_{\mathcal{S}}\Sigma_{S}P_{\mathcal{S}})^{\dagger}) + \underbrace{2\operatorname{tr}(\Sigma P_{\mathcal{S}}^{\perp})\|\theta_{*}\|_{2}^{2}}_{\text{bias}}$$

In high-dimensional data selection, bias is controlled by the low-rank approximation error

Will see: learning with noise $\sigma > 0$, "redundant" points are critical for variance reduction!

Sketchy Moment Matching: Toward Fast and Provable Data Selection for Finetuning

Hoang Phan NYU

Xiang Pan NYU

Qi Lei NYU

In Low Dimension: Variance Reduction

- Consider fixed design for simplicity: $\Sigma = \mathbb{E}_{x \sim P}$
- **Low-dimensional** data selection: $rank(G_S) =$
- V(ariance)-optimality characterizes generalization

Uniform sampling achieves nearly optimal sample complexity in low dimension: Assuming $\|\nabla_{\theta} f(\cdot; 0_r)\|_2 \leq B$ and $\Sigma \geq \gamma I_r$. With probability $\geq 1 - \delta$, X_S sampled uniformly from X satisfies $\Sigma \leq c_S \Sigma_S$ for any $c_S > 1$ whe

$$[\nabla_{\theta} f(x; 0_{r}) \nabla_{\theta} f(x; 0_{r})^{\top}] = G^{\top} G/N$$

$$r \leq n \text{ such that } \Sigma_{S} = G_{S}^{\top} G_{S}/n > 0$$

$$\text{tion: } \mathbb{E}[\text{ER}(\theta_{S})] \leq \frac{\sigma^{2}}{n} \text{tr}(\Sigma \Sigma_{S}^{-1})$$

$$n \gtrsim \frac{B^4}{\gamma^2 (1 - c_S^{-1})^2} (r + \log(1/\delta))$$

In Low Dimension: Variance Reduction

• Consider fixed design for simplicity: $\Sigma = \mathbb{E}_{x \sim P}[$ • Low-dimensional data selection: $\operatorname{rank}(G_S) = r$ • V(ariance)-optimality characterizes generalizati Uniform sampling achieves nearly optimal sampling $\|\nabla_{\theta} f(\cdot; 0_r)\|_2 \leq B$ and $\Sigma \geq \gamma I_r$. With probability $\Sigma \leq c_S \Sigma_S$ for any $c_S > 1$ when

<u>Assumption (Low intrinsic dimension)</u>: For $\Sigma = 0$ be the intrinsic dimension of the learning problem.

Can the low intrinsic dimension of fine-tuning be leveraged when r > n (Σ_S is low-rank)?

$$\nabla_{\theta} f(x; 0_{r}) \nabla_{\theta} f(x; 0_{r})^{\top}] = G^{\top} G/N$$

$$r \leq n \text{ such that } \Sigma_{S} = G_{S}^{\top} G_{S}/n > 0$$
ion: $\mathbb{E}[\text{ER}(\theta_{S})] \leq \frac{\sigma^{2}}{n} \text{tr}(\Sigma \Sigma_{S}^{-1})$
ple complexity in low dimension: Assuming

$$\geq 1 - \delta, X_{S} \text{ sampled uniformly from } X \text{ satisfies}$$
en $n \gtrsim \frac{B^{4}}{\gamma^{2}(1 - c_{S}^{-1})^{2}} (r + \log(1/\delta))$
Optimal range of T optimal range of T optimal T optimal range of T optimal T optimal

be the intrinsic dimension of the learning problem. Assume $\overline{r} \ll \min\{N, r\}$

be the intrinsic dimension of the learning problem. Assume $\overline{r} \ll \min\{N, r\}$

<u>Corollary (Exploitation + exploration)</u>: Given $S \subset [N]$, for $\mathcal{S} \subseteq \text{Range}(\Sigma_S)$ with $\text{rank}(P_{\mathcal{S}}) \asymp \overline{r}$, if

 $\mathbb{E}[\mathrm{ER}(\theta_{\mathrm{S}})] \leq \mathrm{variance} +$

Optimal rank-*t* approximation (truncated SVD)

<u>Assumption (Low intrinsic dimension)</u>: For $\Sigma = G^{\top}G/N$, let $\overline{r} = \min\{t \in [r] \mid \operatorname{tr}(\Sigma - \langle \Sigma \rangle_t) \leq \operatorname{tr}(\Sigma)/N$

• Variance is controlled by exploiting information in $\mathcal{S}: P_{\mathcal{S}}(c_S \Sigma_S - \Sigma) P_{\mathcal{S}} \geq 0$ for some $c_S \geq n/N$; and

• **Bias** is controlled by **exploring** Range(Σ) for an informative \mathcal{S} : $tr(\Sigma P_{\mathcal{S}}^{\perp}) \leq \frac{N}{r}tr(\Sigma - \langle \Sigma \rangle_{\overline{r}})$. Then,

$$bias \lesssim \frac{1}{n} (c_S \sigma^2 \overline{r} + \operatorname{tr}(\Sigma) \|\theta_*\|_2^2)$$

the intrinsic dimension \overline{r} , independent of the (potentially high) parameter dimension r

Optimal rank-t approximation (truncated SVD)

<u>Assumption (Low intrinsic dimension)</u>: For $\Sigma = G^{\top}G/N$, let $\overline{r} = \min\{t \in [r] \mid \operatorname{tr}(\Sigma - \langle \Sigma \rangle_t) \leq \operatorname{tr}(\Sigma)/N$

• Variance is controlled by exploiting information in $\mathcal{S}: P_{\mathcal{S}}(c_S \Sigma_S - \Sigma) P_{\mathcal{S}} \geq 0$ for some $c_S \geq n/N$; and

$$\text{bias} \lesssim \frac{1}{n} (c_S \sigma^2 \overline{r} + \text{tr}(\Sigma) \|\theta_*\|_2^2)$$

Sample efficiency: With suitable selection of $S \subset [N]$, the sample complexity of finetuning is **linear in**

the intrinsic dimension \overline{r} , independent of the (potentially high) parameter dimension r

How to explore the intrinsic low-dimensional structure **efficiently** for data selection?

Optimal rank-*t* approximation (truncated SVD)

<u>Assumption (Low intrinsic dimension)</u>: For $\Sigma = G^{\top}G/N$, let $\overline{r} = \min\{t \in [r] \mid \operatorname{tr}(\Sigma - \langle \Sigma \rangle_t) \leq \operatorname{tr}(\Sigma)/N$

• Variance is controlled by exploiting information in $\mathcal{S}: P_{\mathcal{S}}(c_S \Sigma_S - \Sigma) P_{\mathcal{S}} \geq 0$ for some $c_S \geq n/N$; and

$$\text{bias} \lesssim \frac{1}{n} (c_S \sigma^2 \overline{r} + \text{tr}(\Sigma) \|\theta_*\|_2^2)$$

Sample efficiency: With suitable selection of $S \subset [N]$, the sample complexity of finetuning is **linear in**

- - Common JLT: a Gaussian random matrix with i.i.d entries $\Gamma_{ij} \sim \mathcal{N}(0, 1/m)$

• Gradient sketching: Randomly projecting the high-dimensional gradients $G = \nabla_{\theta} f(X; 0_r) \in \mathbb{R}^{N \times r}$ with r > n to a lower-dimension $m = O(\bar{r}) \ll r$ via a Johnson-Lindenstrauss transform (JLT) $\Gamma \in \mathbb{R}^{r \times m}$

- - Common JLT: a Gaussian random matrix with i.i.d entries $\Gamma_{ii} \sim \mathcal{N}(0, 1/m)$

<u>Theorem (Gradient sketching)</u>: For Gaussian embedding $\Gamma \in \mathbb{R}^{r \times m}$ with $m \ge 11\overline{r}$, let $\widetilde{\Sigma} = \Gamma^{\top} \Sigma \Gamma$ and $\widetilde{\Sigma}_{S} = \Gamma^{\top} \Sigma_{S} \Gamma$. If the coreset $S \subset [N]$ satisfies $rank(\Sigma_{S}) = n > m$ and the $[1.1\overline{r}]$ -th largest eigenvalue $s_{[1,1\bar{r}]}(\Sigma_S) \ge \gamma_S > 0$, then with probability at least 0.9 over Γ , there exists $\alpha > 0$ such that $\mathbb{E}[\mathrm{ER}(\theta_S)] \lesssim \frac{\sigma^2}{n} \mathrm{tr}(\widetilde{\Sigma}(\widetilde{\Sigma}_S)^{\dagger}) + \frac{\sigma^2}{n} \frac{1}{m\gamma_S}$ bias variance sketching error • If S further satisfies $\widetilde{\Sigma} \leq c_S \widetilde{\Sigma}_S$ for some $c_S \geq n/N$, with $m = \max\{\sqrt{\operatorname{tr}(\Sigma)/\gamma_S}, 11\overline{r}\},\$ $\mathbb{E}[\mathrm{ER}(\theta_S)] \lesssim -$

• Gradient sketching: Randomly projecting the high-dimensional gradients $G = \nabla_{\theta_r} f(X; 0_r) \in \mathbb{R}^{N \times r}$ with r > n to a lower-dimension $m = O(\bar{r}) \ll r$ via a Johnson-Lindenstrauss transform (JLT) $\Gamma \in \mathbb{R}^{r \times m}$

$$-\|\widetilde{\Sigma}(\widetilde{\Sigma}_{S})^{\dagger}\|_{2}\operatorname{tr}(\Sigma) + \frac{1}{n}\|\widetilde{\Sigma}(\widetilde{\Sigma}_{S})^{\dagger}\|_{2}\operatorname{tr}(\Sigma)\|\theta_{*}\|_{2}^{2}$$

$$\frac{2S}{n}(\sigma^2 m + \operatorname{tr}(\Sigma) \|\theta_*\|_2^2)$$

- - Common JLT: a Gaussian random matrix with i.i.d entries $\Gamma_{ii} \sim \mathcal{N}(0, 1/m)$

<u>Theorem (Gradient sketching)</u>: For Gaussian embedding $\Gamma \in \mathbb{R}^{r \times m}$ with $m \ge 11\overline{r}$, let $\widetilde{\Sigma} = \Gamma^{\top} \Sigma \Gamma$ and $\widetilde{\Sigma}_{S} = \Gamma^{\top} \Sigma_{S} \Gamma$. If the coreset $S \subset [N]$ satisfies $rank(\Sigma_{S}) = n > m$ and the $[1.1\overline{r}]$ -th largest eigenvalue $s_{[1,1\bar{r}]}(\Sigma_S) \ge \gamma_S > 0$, then with probability at least 0.9 over Γ , there exists $\alpha > 0$ such that $\mathbb{E}[\mathrm{ER}(\theta_S)] \lesssim \frac{\sigma^2}{n} \mathrm{tr}(\widetilde{\Sigma}(\widetilde{\Sigma}_S)^{\dagger}) + \frac{\sigma^2}{n} \frac{1}{m\gamma_S}$ bias variance sketching error • If S further satisfies $\widetilde{\Sigma} \leq c_S \widetilde{\Sigma}_S$ for some $c_S \geq n/N$, with $m = \max\{\sqrt{\operatorname{tr}(\Sigma)/\gamma_S}, 11\overline{r}\},\$ $\mathbb{E}[\mathrm{ER}(\theta_S)] \lesssim -$

• Gradient sketching: Randomly projecting the high-dimensional gradients $G = \nabla_{\theta_r} f(X; 0_r) \in \mathbb{R}^{N \times r}$ with r > n to a lower-dimension $m = O(\bar{r}) \ll r$ via a Johnson-Lindenstrauss transform (JLT) $\Gamma \in \mathbb{R}^{r \times m}$

$$\|\widetilde{\Sigma}(\widetilde{\Sigma}_{S})^{\dagger}\|_{2}\operatorname{tr}(\Sigma) + \frac{1}{n}\|\widetilde{\Sigma}(\widetilde{\Sigma}_{S})^{\dagger}\|_{2}\operatorname{tr}(\Sigma)\|\theta_{*}\|_{2}^{2}$$

$$\frac{c_S}{n}(\sigma^2 m + \operatorname{tr}(\Sigma) \|\theta_*\|_2^2)$$

- - Common JLT: a Gaussian random matrix with i.i.d entries $\Gamma_{ii} \sim \mathcal{N}(0, 1/m)$

<u>Theorem (Gradient sketching)</u>: For Gaussian embedding $\Gamma \in \mathbb{R}^{r \times m}$ with $m \ge 11\overline{r}$, let $\widetilde{\Sigma} = \Gamma^{\top} \Sigma \Gamma$ and $\widetilde{\Sigma}_{S} = \Gamma^{\top} \Sigma_{S} \Gamma$. If the coreset $S \subset [N]$ satisfies $rank(\Sigma_{S}) = n > m$ and the $[1.1\overline{r}]$ -th largest eigenvalue $s_{[1,1\bar{r}]}(\Sigma_S) \ge \gamma_S > 0$, then with probability at least 0.9 over Γ , there exists $\alpha > 0$ such that $\mathbb{E}[\mathrm{ER}(\theta_S)] \lesssim \frac{\sigma^2}{n} \mathrm{tr}(\widetilde{\Sigma}(\widetilde{\Sigma}_S)^{\dagger}) + \frac{\sigma^2}{n} \frac{1}{m\gamma_S}$ bias variance sketching error • If S further satisfies $\widetilde{\Sigma} \leq c_S \widetilde{\Sigma}_S$ for some $c_S \geq n/N$, with $m = \max\{\sqrt{\operatorname{tr}(\Sigma)/\gamma_S}, 11\overline{r}\},$ $\mathbb{E}[\mathrm{ER}(\theta_S)] \lesssim -$

• Gradient sketching: Randomly projecting the high-dimensional gradients $G = \nabla_{\theta_r} f(X; 0_r) \in \mathbb{R}^{N \times r}$ with r > n to a lower-dimension $m = O(\bar{r}) \ll r$ via a Johnson-Lindenstrauss transform (JLT) $\Gamma \in \mathbb{R}^{r \times m}$

$$\|\widetilde{\Sigma}(\widetilde{\Sigma}_{S})^{\dagger}\|_{2}\operatorname{tr}(\Sigma) + \frac{1}{n}\|\widetilde{\Sigma}(\widetilde{\Sigma}_{S})^{\dagger}\|_{2}\operatorname{tr}(\Sigma)\|\theta_{*}\|_{2}^{2}$$

$$\frac{c_S}{n}(\sigma^2 m + \operatorname{tr}(\Sigma) \|\theta_*\|_2^2)$$

Control Variance: Sketchy Moment Matching (SkMM)

Gradient sketching

- Draw a (fast) JLT (e.g. Gaussian random matrix) $\Gamma \in \mathbb{R}^{r \times m}$
- Sketch the gradients $\widetilde{G} = \nabla_{\theta} f(X; 0_r) \Gamma \in \mathbb{R}^{N \times m}$

Moment matching

- Spectral decomposition $\widetilde{\Sigma} = \widetilde{G}^{\top} \widetilde{G} / N = V \Lambda V^{\top}$ with $V = [v_1, \dots, v_m], \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m)$
- Initialize $s = [s_1, \dots, s_N]$ with $s_i = 1/n$ for *n* uniformly sampled $i \in [N]$ and $s_i = 0$ otherwise
- Sample a size-*n* coreset $S \subset [N]$ according to the distribution *s* that solves the optimization problem

$$\min_{s \in [0,1/n]^N} \min_{\gamma = [\gamma_1, \cdots, \gamma_m] \in \mathbb{R}^m} \sum_{j=1}^m (v_j^\top \widetilde{G}^\top \operatorname{diag}(s) \widetilde{G} v_j - s.t. \|s\|_1 = 1, \quad \gamma_j \ge 1/c_S \; \forall \; j \in [m]$$

 $(-\gamma_i\lambda_i)^2$

Efficiency of SkMM: (recall $m \ll \min\{N, r\}$)

- Gradient sketching is parallelizable with input-<u>sparsity time</u>: for nnz(G) = #nonzeros in G
 - Gaussian embedding: O(nnz(G)m)
 - Fast JLT (sparse sign): $O(nnz(G)\log m)$
- **Moment matching** takes $O(m^3)$ for spectral decomposition. The optimization takes O(Nm)per iteration

Relaxation of $\widetilde{\Sigma} \leq c_S \widetilde{\Sigma}_S$: • $\widetilde{\Sigma} \leq c_S \widetilde{\Sigma}_S \iff V^{\mathsf{T}} (\widetilde{(G)}_S^{\mathsf{T}} \widetilde{(G)}_S/n) V \geq \Lambda/c_S$

Assume Σ, Σ_S commute such that imposing *m* diagonal constraints is sufficient

Control Variance: Sketchy Moment Matching (SkMM)

Gradient sketching

- Draw a (fast) JLT (e.g. Gaussian random matrix) $\Gamma \in$
- Sketch the gradients $\widetilde{G} = \nabla_{\theta} f(X; 0_r) \Gamma \in \mathbb{R}^{N \times m}$

Moment matching

- Spectral decomposition $\widetilde{\Sigma} = \widetilde{G}^{\top} \widetilde{G} / N = V \Lambda V^{\top}$ with $V = [v_1, \dots, v_m], \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m)$
- $i \in [N]$ and $s_i = 0$ otherwise **reduces the sketched V-optimality:**
- $\operatorname{tr}(\widetilde{\Sigma}(\Sigma_{S})^{\dagger})$ Sample a size-*n* coreset $S \subset$ that solves the optimization p

$$\min_{s \in [0,1/n]^N} \min_{\gamma = [\gamma_1, \dots, \gamma_m] \in \mathbb{R}^m} \sum_{j=1}^m (v_j^\top \widetilde{G}^\top \operatorname{diag}(s) \widetilde{G} v_j - \gamma_j \lambda_j)^2$$

 $||s||_1 = 1, \quad \gamma_i \ge 1/c_S \; \forall \; j \in [m]$ s.t.

\mathbb{R}	$r \times m$
--------------	--------------

- **Efficiency of SkMM**: (recall $m \ll \min\{N, r\}$)
- Gradient sketching is parallelizable with input-<u>sparsity time</u>: for nnz(G) = #nonzeros in G
 - Gaussian embedding: O(nnz(G)m)
 - Fast JLT (sparse sign): $O(nnz(G)\log m)$

• Initialize $s = [s_1, \dots, s_N]$ with Select $S \subset [N]$ of size |S| = n that ing takes $O(m^3)$ for spectral The optimization takes O(Nm)

 $\begin{array}{l} \text{Relaxation of } \Sigma \ \leq \ c_S \widetilde{\Sigma}_S \\ \bullet \ \widetilde{\Sigma} \ \leq \ c_S \widetilde{\Sigma}_S \ \iff \ V^{\mathsf{T}}(\widetilde{(G)}_S^{\mathsf{T}}\widetilde{(G)}_S/n) V \geq \Lambda/c_S \end{array}$

Assume Σ, Σ_S commute such that imposing *m* diagonal constraints is sufficient

SkMM on Synthetic Data: Regression

Synthetic high-dimensional linear probing

- Gaussian mixture model (GMM) $G \in \mathbb{R}^{N \times r}$
- N = 2000, r = 2400 > N
- $\overline{r} = 8$ well separated clusters of random sizes
- Grid search for the nearly optimal $\alpha > 0$

Table 1: Empirical risk $\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}_S)$ on the GMM dataset at various *n*, under the same hyperparameter tuning where ridge regression over the full dataset \mathcal{D} with N = 2000 samples achieves $\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}_{[N]}) =$ **2.95e-3**. For methods involving sampling, results are reported over 8 random seeds.

		•		-			
n	48	64	80	120	400	800	1600
Herding	7.40e+2	7.40e+2	7.40e+2	7.40e+2	7.38e+2	1.17e+2	2.95e-3
Uniform	$(1.14 \pm 2.71)e-1$	$(1.01 \pm 2.75)e-1$	$(3.44 \pm 0.29)e-3$	$(3.13 \pm 0.14)e-3$	$(2.99 \pm 0.03)e-3$	(2.96 ± 0.01) e-3	(2.95 ± 0.00) e-3
K-center	$(1.23 \pm 0.40)e-2$	$(9.53 \pm 0.60)e-2$	$(1.12 \pm 0.45)e-2$	$(2.73 \pm 1.81)e-2$	$(5.93 \pm 4.80)e-2$	$(1.18 \pm 0.64)e-1$	$(1.13 \pm 0.70)e+0$
Adaptive	$(3.81 \pm 0.65)e-3$	$(3.79 \pm 1.37)e-3$	$(4.83 \pm 1.90)e-3$	$(4.03 \pm 1.35)e-3$	$(3.40 \pm 0.67)e-3$	$(7.34 \pm 3.97)e-3$	$(3.19 \pm 0.16)e-3$
T-leverage	$(0.99 \pm 1.65)e-2$	$(3.63 \pm 0.49)e-3$	$(3.30 \pm 0.30)e-3$	$(3.24 \pm 0.14)e-3$	$\textbf{(2.98\pm0.01)e-3}$	(2.96 ± 0.01) e-3	$(2.95 \pm 0.00)e-3$
R-leverage	$(4.08 \pm 1.58)e-3$	$(3.48 \pm 0.43)e-3$	$(3.25 \pm 0.31)e-3$	$(3.09 \pm 0.06)e-3$	$(3.00 \pm 0.02)e-3$	$(2.97 \pm 0.01)e-3$	$\textbf{(2.95\pm0.00)e-3}$
SkMM	\mid (3.54 \pm 0.51)e-3	$\textbf{(3.31\pm0.15)e-3}$	$\textbf{(3.12\pm0.07)e-3}$	$\textbf{(3.07\pm0.08)e-3}$	$\textbf{(2.98\pm0.02)e-3}$	$\textbf{(2.96\pm0.01)e-3}$	$\textbf{(2.95 \pm 0.00)e-3}$

Baselines

- Herding
- Uniform sampling
- K-center greedy
- Adaptive sampling/random pivoting
- T(runcated)/R(idge) leverage score sampling

SkMM on Synthetic Data: Regression

19

SkMM simultaneously controls variance and bias

SkMM simultaneously controls variance and bias

SkMM for Classification: Linear Probing (LP)

Table 2: Accuracy and F1 score (%) of LP over CLIP on StanfordCars						
	n	2000	2500	3000	3500	4000
Uniform Sampling	Acc F1	$\begin{array}{c} 67.63 \pm 0.17 \\ 64.54 \pm 0.18 \end{array}$	$\begin{array}{c} 70.59 \pm 0.19 \\ 67.79 \pm 0.23 \end{array}$	$\begin{array}{c} 72.49 \pm 0.19 \\ 70.00 \pm 0.20 \end{array}$	$\begin{array}{c} 74.16 \pm 0.22 \\ 71.77 \pm 0.23 \end{array}$	$\begin{array}{c} 75.40 \pm 0.16 \\ 73.14 \pm 0.12 \end{array}$
Herding 90	Acc F1	$\begin{array}{c} 67.22 \pm 0.16 \\ 64.07 \pm 0.23 \end{array}$	$\begin{array}{c} 71.02 \pm 0.13 \\ 68.28 \pm 0.15 \end{array}$	$\begin{array}{c} 73.17 \pm 0.22 \\ 70.64 \pm 0.28 \end{array}$	$\begin{array}{c} 74.64 \pm 0.18 \\ 72.22 \pm 0.26 \end{array}$	$\begin{array}{c} 75.71 \pm 0.29 \\ 73.26 \pm 0.39 \end{array}$
Contextual Diversity [1]	Acc F1	$\begin{array}{c} 67.64 \pm 0.13 \\ 64.51 \pm 0.17 \end{array}$	$\begin{array}{c} 70.82 \pm 0.23 \\ 68.18 \pm 0.25 \end{array}$	$\begin{array}{c} 72.66 \pm 0.12 \\ 70.05 \pm 0.11 \end{array}$	$\begin{array}{c} 74.46 \pm 0.17 \\ 72.13 \pm 0.15 \end{array}$	$\begin{array}{c} 75.77 \pm 0.12 \\ 73.35 \pm 0.07 \end{array}$
Glister 43	Acc F1	$\begin{array}{c} 67.60 \pm 0.24 \\ 64.50 \pm 0.34 \end{array}$	$\begin{array}{c} 70.85 \pm 0.27 \\ 68.07 \pm 0.38 \end{array}$	$\begin{array}{c} 73.07 \pm 0.26 \\ 70.47 \pm 0.35 \end{array}$	$\begin{array}{c} 74.63 \pm 0.21 \\ 72.18 \pm 0.25 \end{array}$	$\begin{array}{c} 76.00 \pm 0.20 \\ 73.69 \pm 0.24 \end{array}$
GraNd [63]	Acc F1	$\begin{array}{c} 67.27 \pm 0.07 \\ 64.04 \pm 0.09 \end{array}$	$\begin{array}{c} 70.38 \pm 0.07 \\ 67.48 \pm 0.09 \end{array}$	$\begin{array}{c} 72.56 \pm 0.05 \\ 69.81 \pm 0.08 \end{array}$	$\begin{array}{c} 74.67 \pm 0.06 \\ 72.13 \pm 0.05 \end{array}$	$\begin{array}{c} 75.77 \pm 0.12 \\ 73.44 \pm 0.13 \end{array}$
Forgetting [79]	Acc F1	$\begin{array}{c} 67.59 \pm 0.10 \\ 64.85 \pm 0.13 \end{array}$	$\begin{array}{c} 70.99 \pm 0.05 \\ 68.53 \pm 0.07 \end{array}$	$\begin{array}{c} 72.54 \pm 0.07 \\ 70.30 \pm 0.05 \end{array}$	$\begin{array}{c} 74.81 \pm 0.05 \\ 72.59 \pm 0.04 \end{array}$	$\begin{array}{c} 75.74 \pm 0.01 \\ 73.74 \pm 0.02 \end{array}$
DeepFool [59]	Acc F1	$\begin{array}{c} 67.77 \pm 0.29 \\ 64.16 \pm 0.68 \end{array}$	$\begin{array}{c} 70.73 \pm 0.22 \\ 68.49 \pm 0.53 \end{array}$	$\begin{array}{c} 73.24 \pm 0.22 \\ 70.93 \pm 0.32 \end{array}$	$\begin{array}{c} 74.57 \pm 0.23 \\ 72.44 \pm 0.27 \end{array}$	$\begin{array}{c} 75.71 \pm 0.15 \\ 73.79 \pm 0.15 \end{array}$
Entropy [19]	Acc F1	$\begin{array}{c} 67.95 \pm 0.11 \\ 64.55 \pm 0.10 \end{array}$	$\begin{array}{c} 71.00 \pm 0.10 \\ 67.95 \pm 0.12 \end{array}$	$\begin{array}{c} 73.28 \pm 0.10 \\ 70.68 \pm 0.12 \end{array}$	$\begin{array}{c} 75.02 \pm 0.08 \\ 72.46 \pm 0.12 \end{array}$	$\begin{array}{c} 75.82 \pm 0.06 \\ 73.29 \pm 0.04 \end{array}$
Margin [19]	Acc F1	$\begin{array}{c} 67.53 \pm 0.14 \\ 64.16 \pm 0.15 \end{array}$	$\begin{array}{c} 71.19 \pm 0.09 \\ 68.33 \pm 0.14 \end{array}$	$\begin{array}{c} 73.09 \pm 0.14 \\ 70.37 \pm 0.17 \end{array}$	$\begin{array}{c} 74.66 \pm 0.11 \\ 72.03 \pm 0.11 \end{array}$	$\begin{array}{c} 75.57 \pm 0.13 \\ 73.14 \pm 0.20 \end{array}$
Least Confidence [19]	Acc F1	$\begin{array}{c} 67.68 \pm 0.11 \\ 64.09 \pm 0.20 \end{array}$	$\begin{array}{c} 70.99 \pm 0.14 \\ 68.03 \pm 0.20 \end{array}$	$\begin{array}{c} 73.04 \pm 0.05 \\ 70.30 \pm 0.07 \end{array}$	$\begin{array}{c} 74.65 \pm 0.09 \\ 72.02 \pm 0.10 \end{array}$	$\begin{array}{c} 75.58 \pm 0.08 \\ 73.15 \pm 0.12 \end{array}$
SkMM-LP	Acc F1	$\begin{array}{r} 68.27 \pm 0.03 \\ 65.29 \pm 0.03 \end{array}$	$\begin{array}{c} 71.53 \pm 0.05 \\ 68.75 \pm 0.06 \end{array}$	$73.61 \pm 0.02 \\71.14 \pm 0.03$	$\begin{array}{c} \textbf{75.12} \pm \textbf{0.01} \\ \textbf{72.64} \pm \textbf{0.02} \end{array}$	$76.34 \pm 0.02 \\74.02 \pm 0.10$

StanfordCar dataset

- 196 imbalanced classes
- N = 16,185 images

Linear probing (LP)

- CLIP-pre-trained ViT
- r = 100,548

Last-two-layer finetuning (FT)

- ImageNet-pre-trained ResNet18
- r = 2,459,844

SkMM for Classification: Last-two-layer Finetuning (FT)

ble 3: Accuracy and F	1 scor	e (%) of FT	over (the las	t two layers	of) ResNet18	3 on Stanford	Cars
	n	2000	2500	3000	3500	4000	
Uniform Sampling	Acc F1	$\begin{array}{c} 29.19 \pm 0.37 \\ 26.14 \pm 0.39 \end{array}$	$\begin{array}{c} 32.83 \pm 0.19 \\ 29.91 \pm 0.16 \end{array}$	$\begin{array}{c} 35.69 \pm 0.35 \\ 32.80 \pm 0.37 \end{array}$	$\begin{array}{c} 38.31 \pm 0.16 \\ 35.38 \pm 0.19 \end{array}$	$\begin{array}{c} 40.35 \pm 0.26 \\ 37.51 \pm 0.23 \end{array}$	<u>S</u>
Herding 90	Acc F1	$\begin{array}{c} 29.19 \pm 0.21 \\ 25.90 \pm 0.24 \end{array}$	$\begin{array}{c} 32.42 \pm 0.16 \\ 29.48 \pm 0.23 \end{array}$	$\begin{array}{c} 35.83 \pm 0.24 \\ 32.89 \pm 0.27 \end{array}$	$\begin{array}{c} 38.30 \pm 0.19 \\ 35.50 \pm 0.22 \end{array}$	$\begin{array}{c} 40.51 \pm 0.19 \\ 37.56 \pm 0.21 \end{array}$	•
Contextual Diversity [1]	Acc F1	$\begin{array}{c} 28.50 \pm 0.34 \\ 25.65 \pm 0.40 \end{array}$	$\begin{array}{c} 32.66 \pm 0.27 \\ 29.79 \pm 0.29 \end{array}$	$\begin{array}{c} 35.67 \pm 0.32 \\ 32.86 \pm 0.31 \end{array}$	$\begin{array}{c} 38.31 \pm 0.15 \\ 35.55 \pm 0.14 \end{array}$	$\begin{array}{c} 40.53 \pm 0.18 \\ 37.81 \pm 0.23 \end{array}$	•
Glister [43]	Acc F1	$\begin{array}{c} 29.16 \pm 0.26 \\ 26.33 \pm 0.19 \end{array}$	$\begin{array}{c} 32.91 \pm 0.19 \\ 30.05 \pm 0.28 \end{array}$	$\begin{array}{c} \textbf{36.03} \pm \textbf{0.20} \\ \textbf{33.26} \pm \textbf{0.18} \end{array}$	$\begin{array}{c} 38.16 \pm 0.12 \\ 35.41 \pm 0.14 \end{array}$	$\begin{array}{c} 40.47 \pm 0.16 \\ 37.63 \pm 0.17 \end{array}$	L
GraNd 63	Acc F1	$\begin{array}{c} 28.59 \pm 0.17 \\ 25.66 \pm 0.15 \end{array}$	$\begin{array}{c} 32.67 \pm 0.20 \\ 29.70 \pm 0.22 \end{array}$	$\begin{array}{c} 35.83 \pm 0.16 \\ 32.76 \pm 0.16 \end{array}$	$\begin{array}{c} 38.58 \pm 0.15 \\ 35.72 \pm 0.15 \end{array}$	$\begin{array}{c} 40.70 \pm 0.11 \\ 37.83 \pm 0.11 \end{array}$	•
Forgetting [79]	Acc F1	$\begin{array}{c} 28.61 \pm 0.31 \\ 25.64 \pm 0.25 \end{array}$	$\begin{array}{c} 32.48 \pm 0.28 \\ 29.58 \pm 0.30 \end{array}$	$\begin{array}{c} 35.18 \pm 0.24 \\ 32.38 \pm 0.20 \end{array}$	$\begin{array}{c} 37.78 \pm 0.22 \\ 35.16 \pm 0.18 \end{array}$	$\begin{array}{c} 40.24 \pm 0.13 \\ 37.41 \pm 0.14 \end{array}$	
DeepFool [59]	Acc F1	$\begin{array}{c} 24.97 \pm 0.20 \\ 22.11 \pm 0.11 \end{array}$	$\begin{array}{c} 29.02 \pm 0.17 \\ 26.08 \pm 0.29 \end{array}$	$\begin{array}{c} 32.60 \pm 0.18 \\ 29.83 \pm 0.27 \end{array}$	$\begin{array}{c} 35.59 \pm 0.24 \\ 32.92 \pm 0.33 \end{array}$	$\begin{array}{c} 38.20 \pm 0.22 \\ 35.47 \pm 0.22 \end{array}$	
Entropy [19]	Acc F1	$\begin{array}{c} 28.87 \pm 0.13 \\ 25.95 \pm 0.17 \end{array}$	$\begin{array}{c} 32.84 \pm 0.20 \\ 30.03 \pm 0.17 \end{array}$	$\begin{array}{c} 35.64 \pm 0.20 \\ 32.85 \pm 0.23 \end{array}$	$\begin{array}{c} 37.96 \pm 0.11 \\ 35.19 \pm 0.12 \end{array}$	$\begin{array}{c} 40.29 \pm 0.27 \\ 37.33 \pm 0.34 \end{array}$	
Margin 19	Acc F1	$\begin{array}{c} 29.18 \pm 0.12 \\ 26.15 \pm 0.12 \end{array}$	$\begin{array}{c} 32.73 \pm 0.15 \\ 29.66 \pm 0.05 \end{array}$	$\begin{array}{c} 35.67 \pm 0.30 \\ 32.86 \pm 0.30 \end{array}$	$\begin{array}{c} 38.27 \pm 0.20 \\ 35.61 \pm 0.17 \end{array}$	$\begin{array}{c} 40.58 \pm 0.06 \\ 37.77 \pm 0.07 \end{array}$	•
Least Confidence [19]	Acc F1	$\begin{array}{c} 29.05 \pm 0.07 \\ 26.18 \pm 0.04 \end{array}$	$\begin{array}{c} 32.88 \pm 0.13 \\ 30.03 \pm 0.14 \end{array}$	$\begin{array}{c} 35.66 \pm 0.18 \\ 32.79 \pm 0.15 \end{array}$	$\begin{array}{c} 38.25 \pm 0.20 \\ 35.42 \pm 0.16 \end{array}$	$\begin{array}{c} 39.91 \pm 0.09 \\ 37.14 \pm 0.12 \end{array}$	٠
SkMM-FT	Acc F1	$\begin{array}{c} \textbf{29.44} \pm \textbf{0.09} \\ \textbf{26.71} \pm \textbf{0.10} \end{array}$	$\begin{array}{c} 33.48 \pm 0.04 \\ 30.75 \pm 0.05 \end{array}$	$\begin{array}{c} \textbf{36.11} \pm \textbf{0.12} \\ \textbf{33.24} \pm 0.05 \end{array}$	$\begin{array}{c} \textbf{39.18} \pm \textbf{0.03} \\ \textbf{36.38} \pm \textbf{0.05} \end{array}$	$\begin{array}{r} \textbf{41.77} \pm \textbf{0.07} \\ \textbf{39.07} \pm \textbf{0.10} \end{array}$	

- StanfordCar dataset
- 196 imbalanced classes
- N = 16,185 images

Linear probing (LP)

- CLIP-pre-trained ViT
- *r* = 100,548
- Last-two-layer finetuning (FT)
- ImageNet-pre-trained ResNet18
- *r* = 2,459,844

Takeaways

- A rigorous generalization analysis on data selection for finetuning
 - Low-dimensional data selection: variance reduction (V-optimality)
 - High-dimensional data selection: variance-bias tradeoff
- Gradient sketching provably finds a low-dimensional parameter subspace S with small bias
 - Reducing variance over \mathcal{S} preserves the fast-rate generalization $O(\dim(\mathcal{S})/n)$
- SkMM a scalable two-stage data selection method for finetuning that simultaneously
 - Explores the high-dimensional parameter space via gradient sketching and
 - Exploits the information in the low-dimensional subspace via moment matching

Thank You!

Dong, Y., Phan, H., Pan, X., & Lei, Q. Sketchy Moment Matching: Toward Fast and Provable Data Selection for Finetuning. In *The Thirtyeighth Annual Conference on Neural Information Processing Systems*.

Dong, Y., Chen, C., Martinsson, P. G., & Pearce, K. (2023). Robust blockwise random pivoting: Fast and accurate adaptive interpolative decomposition. *arXiv preprint arXiv:2309.16002*.