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Time integration of discrete dynamical systems

ST PO p . T e e .
- Initialize with 65 € R”. For each step k = 0,1,---, K — 1, update 6 | = 6 A KF(Hk ).

i The increment function F' : R? — R? involves a least-square problem:

F(0F) = argmin ||J(6)n —f(g,f)H%,
neR?

| where J(6) € R"™ satisfies rank(J(9)) = pforall f € R”, and f: RP > R". |

Goal: Given 6’6‘< and I, we aim to approximate the trajectory 0=, ---, (9;?.
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- Initialize with 65 € R”. For each step k = 0,1,---, K — 1, update 6 | = 6 A KF(Hk ).

i The increment function F' : R? — R? involves a least-square problem:

F(07) = arg mun ||J(0F)n —f(Q;)H%,
neR?

(where J(0) € R™ satifies rank(/(0) = pforal 0 ERY andf: RO > R". )

% Goal: Given Hak and I, we aim to approximate the trajectory 6=, ---, 9}?-

# Challenge: Poorly conditioned least-squares problems: x(J(0)) = 0,(/(0))/0,(J(0)) > 1.

Question: Under finite precision, how to approximate 6’;‘<, vee, 6’;‘; with a low total error:
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Example: Neural Galerkin

“ With initial condition 1, : & — R, aim to solve:
ou(t,x) = f(t,x), u(0,x) = uy(x), v (¢,x) € [0,1] X .
“# Forward Euler:
u(ty, 1,x) = u(ty, x) + f(t,, x)/K, u(ty, x) = uy(x), Vk=0,---, K—-1,x € .

% Nonlinear parametrization at each time step: u(#,, - ) = U(0,, - ) forevery k = 0,---, K — 1 where
UG, -): & — Risaneural network parametrized by 6, € R”.

# The Neural Galerkin scheme based on the Dirac-Frenkel variational principle seeks

M, = arg min ” VoU(O, L) — f(6, L) ” 2
neR? ’

forallk = 0,---, K — 1 and updates 6, ; = 0, + 11,/ K.

# The Jacobian matrix V,U(6,, ) € RI<41XP is often poorly condition/numerically low-rank.

[Lubich, 2005], [Sapsis, Lermusieux, 2009], [Du, Zaki, PhRvE2021], [Anderson, Farazmand, SISC2022], [Berman,
Peherstorfer, NeurlPS2023], [Bruna, Peherstorfer, Vanden-Eijnden, JCP2024], ...
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Classical approach: deterministic regularization (truncated SVD)

Start with /9\0 = 0. Foreachk = 0,---, K — 1, update (/9\k+1 = /H\k | % f(é’\k) regularized

F (0 = V(091 f(6))

”/4’ r = rank (J(Hk)) < p is the numerical rank w.r.t. a glven preC|S|on () <T<K 1

rank (J) = mln{m S [p] Hl] [[J]] ||2 < THJ”Z} where O*
/1], denotes the optimal rank-m approximation of J from TSVD.



Limitation of deterministic regularization

A A 1 A A
Regularized integration with TSVD increments: 0, = 0, 1 K[[J(é’k)]]:f @) fork=0,--,K—1

i Deterministic regularization leads to accumulation of bias  } k

////;yz Consider toy dynamics with a constant J( - ) = J that admits a =
low numerical rank rank (J) = r < p.

% Let P. € RP*P be the orthogonal projector onto Row([[/]] ). ‘ 0

If || (7, - P,,)[— Zf(@.*)] > p_ forevery k =0,---, K — 1, then
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Limitation of deterministic regularization

A A 1 A A
Regularized integration with TSVD increments: 0, = 0, 1 K[[J(ek)]]j @) fork=0,--,K—1

Deterministic regularization leads to accumulation of bias

/////,; Consider toy dynamics with a constant J( - ) = J that admits a
low numerical rank rank (J) = r < p.

///i Let P. € RP*? be the orthogonal projector onto Row([[/]] ).

"j f/’l///ﬁ/

If |, - Pr)[

2

> p_ forevery k =0,---, K — 1, then

O%
O
%

Accumulation of bias also occurs under
other deterministic regularizations like

Tikhonov regularization:

F () = arg min 17C0,)n — F(OI13
| neR’
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Randomized time integration

Start with 50 = «96‘<. Foreachk =0,---, K — 1,

™~/

N randomized

update ng = gk | X

IRandomized increments: 77, =

| Randomized increment function: F : RP X & — RP |

//// {I'vi~Pglk=0,--,K—1, i€ [q]} are drawn
t i.i.d. from a given distribution P¢ supported on some
set & (e.g., Gaussian random matrices).

1" Local sample size: ¢ € N

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.]
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Randomized time integration

Assumption: unbiased F' with low variance

Start with 8, = 6*. For each k = 0,---,K—1,
0770 For all @ € RP, there exists some C,, > 0 such that

update 9k+1 — Hk I K;ik randomized (1) —F[F(Q, F)] _ F(é’)
T @ ELIFO.1) - FO)3 < CIFOI
IRandomized increments: 1, = — Z F0,;1.)

—

|” Randomized increment function: F : RP X & — RP |

/% {I'vi~Pglk=0,--,K—1, i€ [q]} are drawn
t i.i.d. from a given distribution P¢ supported on some
set & (e.g., Gaussian random matrices).

1" Local sample size: ¢ € N

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.]
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Randomized time integration

Assumption: unbiased F' with low variance
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—T T @ ELIF©O.T) - FOI3 < CIFO)I
IRandomized increments: 1, = — Z F0,;1.)
9=
”’/4’ Randomized increment function: F : R X & — R? | 0%

”’%’ {Fk,l ~ PS ‘ k — O,"', K — 1, l & [g]} are drawn ek (unbiased)
i i.i.d. from a given distribution P¢ supported on some

set & (e.g., Gaussian random matrices).

1" Local sample size: ¢ € N

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.]
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Randomized time integration

Start with 50 = «96‘<. Foreachk =0,---, K — 1,

update 5k+1 — 5]( | K;ik randomized
{Randomized increments: 77, = — Z F(0,:;T,)
| 11

—

| Randomized increment function: F : RP X & — RP? |

”/// {I'vi~Pglk=0,--,K—1, i€ [q]} are drawn
t i.i.d. from a given distribution P¢ supported on some
set & (e.g., Gaussian random matrices).

1" Local sample size: ¢ € N

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.]
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Assumption: unbiased F' with low variance

For all 0 € R”, there exists some C|, > 0 such that

(1) Ef[ F (0,1)] = F(6)

(2) EL[|| F(0.T) — F)|13] < C||IF©®)3

gk with lower variance due to
(i) I' ~ Pg with smaller C,, or
(i) a larger g

@, (unbiased)

|
at®
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Randomized time integration: convergence

Assumptions:

# Unbiased F with low variance: ‘F[F(H, [)] = F(0),and (2) Er[| F(H, ) = F(Q)H%] = CV”F(H)”%'
“ Lipschitz and bounded F: (1) ||F(0) — F(6)||, < Lg||0 — 0], V 0,0, and (2) || F(0)||, < Bg||0], V 6.

er' T 5k with lower variance due to

| () ~ Pgwith smaller C, or
o~ ~ ~ ~ : i) a larger

{Start with 6 = 0. Let 0, | = 0, Kﬂk where (i) a farger g O

N 1 &~ ~ ?’ 0, (unbiased
nkz—z F01,,)foreachk =0,---,K— 1.} 3 )
{ q -

t  0<k<K

22 2L
BrBye=r C, |
K ¢ '

— _%(519 '"95[{)_ S




Randomized time integration: convergence

Assumptions:

# Unbiased F with low variance: E,[ F (0,1)] = F(6), and (2) E({|| F (6,T) — FO)l3] < CIIF@II5.
“ Lipschitz and bounded F: (1) ||F(0) — F(6)||, < Lg||0 — 0], V 0,0, and (2) || F(0)||, < Bg||0], V 6.

i Theorem: x .
i (i) I' ~ Pgwith smaller C| or

Start with 6y = 7. Let 0, = 0 K'ﬁk where (i) a farger q O

N l &~ ~ ? gk (unbiased)
i1, = — Z F(0,1,,)foreachk=0,---,K—1.}

[If max ||6,]l, = By, then

i 0<k<K

2 p2 2L
BrBye=r C,

— _%(519'"95[{)_ S

K q I  The expected total error converges as ¢ increases.
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Randomized time integration for least-squares increments

Question: How to construct an unbiased F with low variance for F(@l:k) = arg min HJ(H;)n —f(@;)”%
neRP

st. E[F(0,1)] = F(0); ELI| F (6.T) — F9)|13] < C,IIF(6)|3; and ?




Randomized time integration for least-squares increments

Question: How to construct an unbiased F with low variance for F(6’*) = arg min HJ(H*)n f(@*)H2

S.t. b

' Randomlzed Ieast-squares mcrements

([ F(0.1)] = F(O);

I F(0.1) - FO)IE < CIFO)I5; ane

F(@:;1) =Targmin || JOD) v—fO)|3

m veR™

neR?

(0 <m < p)

?

Insoired bv [Berman. Peherstorfer. NeurlPS20231 ]

i7" € RP*™ is a random matrix drawn from a rotation-invariant distribution with rank(I"') = m almost surely.

» Gaussian random matrix: I’ = G with sz ~ N (0,1/m)i.i.d.

| * Random unitary embedding: I' = ortho(G) \



Randomized time integration for least-squares increments

Question: How to construct an unbiased F with low variance for F(6’*) = arg min HJ(H*)n f(6’>‘<)H2
neRP

s.t. F[F(é’ )] = F(@O),; Bl F(6’ F) — F(6’)H2] <C HF(H)Hz, and ?

' Randomlzed Ieast-squares mcrements Insolred bv [Berman Peherstorfer NeurIP820231 !

F(6’ [) = ﬁF arg min || (J(O)I') v f(H)H2 (0 <m< p)

m veR™

1 " € RP™ is a random matrix drawn from a rotation-invariant distribution with rank(I") = m almost surely. }
,( y ]

+ Gaussian random matrix: I' = G with G;; ~ A (0,1/m) i.i.d.

| * Random unitary embedding: I" = ortho(G)

—~ - 2
I' is unbiased with low variance associated with C, = max {1, (p m) } Larger m = smaller

C, & lower variance



Randomized time integration for least-squares increments

Question: How to construct an unbiased F with low variance for F(6’*) = arg min HJ(H*)n f(6’>‘<)H2
neRP

st Er[F(0.1)] = FO) Erl| F(0.1) - FOI < CIFO)I}; anc ?

' Randomized Ieast-squares increments: Insoired bv [Berman. Peherstorfer. NeurIP820231

F(6’ [) = ﬁF arg min || (J(O)I') v f(H)H2 (0 <m< p)

m veR™

1 " € RP™ is a random matrix drawn from a rotation-invariant distribution with rank(I") = m almost surely. }
,( y ]

+ Gaussian random matrix: I' = G with G;; ~ A (0,1/m) i.i.d.

| * Random unitary embedding: I" = ortho(G)

p—m )2} Larger m = smaller

F is unbiased with low variance associated with C, = max < 1. ( |
C, & lower variance

for I with orthonormal columns. ' Is / well-conditioned?
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Sketching improves conditioning

'Th.eo’rem FOrJ = R”Xphwith Sinularvalues c(J) > > 9 (J) > () and a random unltary embeddlng
F e R if log(p) < m < p and [ = Q(m), with probability at least 0.98,

) <3 (\/*)\/ L+0G/mlp) o)) [P
o/(J) | — O(log(l)/ m) al(] Y | m |

7
o

Jf —=#— Random unitary

v Gaussian

r g

10% 2 —— 01(A)/Om(A)
0 500 1000
Embedding dimension m

Condition number




Condition number

Sketching improves conditioning

'Th.eo'rem For J € R™ with Sinularvalues c(J) > > 9 (J) > () and a random unltary embeddlng
F e R if log(p) < m < p and [ = Q(m), with probability at least 0.98,

) <3 (\/*)\/ L+0G/mlp) o)) [P
o/(J) | — O(log(l)/ m) al(] Y | m |

For any poorly conditioned J(60),
taking an embedding dimension

Iy m slightly smaller than numerical

4/ —=— Randomunitary  rank r = rank (J(0)) brings a

101 Gauss’a well-conditioned matrix with

’; —— 01(A)/on(A)

0 500 1000 : k(JOI) <1/7

Embedding dimension m




Condition number

Sketching improves conditioning

'Th.eo'rem For J € R™ with Sinularvalues c(J) > > 9 (J) > () and a random unltary embeddlng
F e R if log(p) < m < p and [ = Q(m), with probability at least 0.98,

) <3 (\/*)\/ L+0G/mlp) o)) [P
o/(J) | — O(log(l)/ m) al(] Y | m |

, \
10 For any poorly conditioned J(60), _
105 taking an embedding dimension Variance-conditioning trade-off:
105 :,f | m slightly smaller than n.umerlcal #Larger m = smaller C,
1/ —=— Random unitary rank r = rank (J(0)) brings a
_of Gaussian i .y : : Py
101) s S ———— well-conditioned matrix with #Smaller m = smaller k(J()I')
0 500 1000 \ k(JOI') < 1/7 :

Embedding dimension m



Experiment: Synthetic dynamical system with J( - ) = J

Random unitary, K= 100 Random unitary, g = 60, K= 100

‘ .....  TERRE ‘ .....  TEERE ’ ..... ‘ ..... ' TERRE ‘ ..... $----- ‘

. A ~ | # Plain = direct time

O O o iIntegration with poorly

— — 10 ] agn .

v v | conditioned increments

S 3 |

O O — —
= = 1071 \ *7=10"%anda = 107"’

are the best regularization
hyperparameters obtained
from grid searches.

1 4 10 20 40 100 20 60 120 200

q m
—eo— Random (m=60) =% TSVD (T=1e-06) —eo— Random --&- Tikhonov (a=1le-13)
Random (m=80) --&- Tikhonov (a=1e-13) TSVD (T=1e-06) --4- Plain

% Regularized time integration with TSVD or Tikhonov regularization leads to (large) accumulative bias.

» Randomized time integration becomes more accurate as g increases (variance decreases).

% Optimal m under variance-conditioning trade-off
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Experiment: Approximating double-well guantum dynamics

—— randomized m = 5
—%— randomized m = 20
- randomized m = 40

- regularized 12
regularized rcond

10° ! . .
—
S 10° -
a3
g 100y ]
= 101 | -
g_{ 3 3 o 3 g, 3
10—3K’(¥ ;IE 9|( ‘)I(i %
1 10 20 30 40

number of replicates q

(a) relative error randomized

104 Lo linear increase et i
= —-= 12 runtime
c
= 103
=
=
—
102 l

1 5 10 20
number of replicates q

(¢) runtimes randomized

relative error

relative error

10°

10° F
10 F

107t F

103

!/'_'

10—°

(b) relative error regularized

10~ 1072
number of replicates ¢

100

time t

(d) errors over time

Following the setup in [Feischl, Lasser, Lubich, Nick, 2024]

[
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# 1D-Schrodinger Equation with neural
network parametrization, updated via
Neural Galerkin scheme ([Bruna,
Peherstorfer, Vanden-Eijnden, JCP2024],
[Berman, Peherstorfer, NeurlPS2023])

“# Randomized time integration (1 = 40)
outperforms the counterparts with
and Tikhonov regularization.

» Randomized time integration (1 = 40)

becomes more accurate as g increases
(variance decreases).

» For g > 10, convergence of relative

error in g plateaus due to numerical
error in basic operations like addition.

# Regularized time integration is sensitive
to hyperparameters and can fail under a
bad choice.
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