
Randomize instead of Regularize: Stable Time 
Integration for Poorly Conditioned Dynamical Systems

Yijun Dong 
Joint work with: Benjamin Peherstorfer, Paul Schwerdtner 

Courant Institute of Mathematical Sciences, New York University 

SIAM CSE25, March 5, 2025, Fort Worth, Texas 



Time integration of discrete dynamical systems

2

Initialize with . For each step , update .  

The increment function  involves a least-square problem: 

, 

where  satisfies  for all , and .

θ*0 ∈ ℝp k = 0,1,⋯, K − 1 θ*k+1 = θ*k +
1
K

F(θ*k )

F : ℝp → ℝp

F(θ*k ) = arg min
η∈ℝp

∥J(θ*k )η − f(θ*k )∥2
2

J(θ) ∈ ℝn×p rank(J(θ)) = p θ ∈ ℝp f : ℝp → ℝn

Goal: Given  and , we aim to approximate the trajectory .θ*0 F θ*1 , ⋯, θ*K
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J(θ) ∈ ℝn×p rank(J(θ)) = p θ ∈ ℝp f : ℝp → ℝn

Goal: Given  and , we aim to approximate the trajectory .θ*0 F θ*1 , ⋯, θ*K

Question: Under finite precision, how to approximate  with a low total error:  θ*1 , ⋯, θ*K

ℰ(θ1, ⋯, θK) =
1
K

K

∑
i=1

∥θi − θ*i ∥2
2

Challenge: Poorly conditioned least-squares problems: .κ(J(θ)) = σ1(J(θ))/σp(J(θ)) ≫ 1



Example: Neural Galerkin
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With initial condition , aim to solve:  

. 

Forward Euler:  

. 

Nonlinear parametrization at each time step:  for every  where 
 is a neural network parametrized by . 

The Neural Galerkin scheme based on the Dirac-Frenkel variational principle seeks  

  

for all  and updates . 

The Jacobian matrix  is often poorly condition/numerically low-rank.

u0 : 𝒳 → ℝ

∂tu(t, x) = f(t, x), u(0,x) = u0(x), ∀ (t, x) ∈ [0,1] × 𝒳

u(tk+1, x) = u(tk, x) + f(tk, x)/K, u(t0, x) = u0(x), ∀ k = 0,⋯, K − 1, x ∈ 𝒳

u(tk, ⋅ ) = U(θk, ⋅ ) k = 0,⋯, K − 1
U(θk, ⋅ ) : 𝒳 → ℝ θk ∈ ℝp

ηk = arg min
η∈ℝp

∇θU(θk, 𝒳)η − f(θk, 𝒳)
2

2

k = 0,⋯, K − 1 θk+1 = θk + ηk /K

∇θU(θk, 𝒳) ∈ ℝ|𝒳|×p

[Lubich, 2005], [Sapsis, Lermusieux, 2009], [Du, Zaki, PhRvE2021], [Anderson, Farazmand, SISC2022], [Berman, 
Peherstorfer, NeurIPS2023], [Bruna, Peherstorfer, Vanden-Eijnden, JCP2024], …



Classical approach: deterministic regularization (truncated SVD)
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Start with . For each , update ̂θ 0 = θ*0 k = 0,⋯, K − 1 ̂θ k+1 = ̂θ k +
1
K

̂F ( ̂θ k)
well-conditioned 

regularized 
increment function 

θ*0

̂θ 1

 
(well-conditioned)
Row([[J(θ*0 )]]r)

θ*1

Regularized integration with truncated SVD (TSVD) increments: 

 

 is the numerical rank w.r.t. a given precision .

̂F ( ̂θ k) = [[J( ̂θ k)]]†
r f( ̂θ k)

r = rankτ(J( ̂θ k)) < p 0 < τ ≪ 1

*  where 
 denotes the optimal rank-  approximation of  from TSVD.

rankτ(J) = min{m ∈ [p] |∥J − [[J]]m∥2 < τ∥J∥2}
[[J]]m m J



Limitation of deterministic regularization
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Regularized integration with TSVD increments:  for ̂θ k+1 = ̂θ k +
1
K

[[J( ̂θ k)]]†
r f( ̂θ k) k = 0,⋯, K − 1

Deterministic regularization leads to accumulation of bias 

Consider toy dynamics with a constant  that admits a 
low numerical rank . 

Let  be the orthogonal projector onto .  

If  for every , then  

J( ⋅ ) ≡ J
rankτ(J) = r < p

Pr ∈ ℝp×p Row([[J]]r)

(Ip − Pr)
1
K

k−1

∑
j=0

f(θ*j )

2

≥ b−r k = 0,⋯, K − 1

ℰ( ̂θ 1, ⋯, ̂θ K) ≥
b2

−r

3σ2
r+1(J)

θ*0

̂θ k

Row([[J]]r)

θ*k
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3σ2
r+1(J)

Lower bound of error 
due to accumulation 
of bias over time
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̂θ k

Row([[J]]r)

θ*k
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Accumulation of bias also occurs under 
other deterministic regularizations like 
Tikhonov regularization: 

̂F ( ̂θ k) = arg min
η∈ℝp

∥J( ̂θ k)η − f( ̂θ k)∥2
2 + α∥η∥2

2

θ*0

̂θ k

Row([[J]]r)

θ*k



Randomized time integration 
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Randomized increments:  

Randomized increment function:  

 are drawn 
i.i.d. from a given distribution  supported on some 
set  (e.g., Gaussian random matrices). 

Local sample size: 

η̃k =
1
q

q

∑
i=1

F̃ (θ̃k; Γk,i)

F̃ : ℝp × 𝒮 → ℝp

{Γk,i ∼ PS |k = 0,⋯, K − 1, i ∈ [q]}
PS

𝒮

q ∈ ℕ

Start with . For each , 

update 

θ̃0 = θ*0 k = 0,⋯, K − 1

θ̃k+1 = θ̃k +
1
K

η̃k
well-conditioned 

randomized 
increments

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable 
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.] 
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Assumption: unbiased  with low variance 

 For all , there exists some  such that 

(1)  

(2) 

F̃

θ ∈ ℝp Cv ≥ 0

𝔼Γ[ F̃ (θ, Γ)] = F(θ)

𝔼Γ[∥ F̃ (θ, Γ) − F(θ)∥2
2] ≤ Cv∥F(θ)∥2

2

̂θ k

θ*k

θ*0

Accumulative bias 
from regularization

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable 
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.] 



Randomized time integration 

6

Randomized increments:  

Randomized increment function:  

 are drawn 
i.i.d. from a given distribution  supported on some 
set  (e.g., Gaussian random matrices). 

Local sample size: 

η̃k =
1
q

q

∑
i=1

F̃ (θ̃k; Γk,i)

F̃ : ℝp × 𝒮 → ℝp

{Γk,i ∼ PS |k = 0,⋯, K − 1, i ∈ [q]}
PS

𝒮

q ∈ ℕ

Start with . For each , 

update 

θ̃0 = θ*0 k = 0,⋯, K − 1

θ̃k+1 = θ̃k +
1
K

η̃k
well-conditioned 

randomized 
increments

 (unbiased)θ̃k

Assumption: unbiased  with low variance 

 For all , there exists some  such that 

(1)  

(2) 

F̃

θ ∈ ℝp Cv ≥ 0

𝔼Γ[ F̃ (θ, Γ)] = F(θ)

𝔼Γ[∥ F̃ (θ, Γ) − F(θ)∥2
2] ≤ Cv∥F(θ)∥2

2

̂θ k

θ*k

θ*0

Accumulative bias 
from regularization

[Dong, Schwerdtner, Peherstorfer, “Randomize instead of Regularize: Stable 
Time Integration for Poorly Conditioned Dynamical Systems”, in preparation.] 



Randomized time integration 

6

Randomized increments:  

Randomized increment function:  

 are drawn 
i.i.d. from a given distribution  supported on some 
set  (e.g., Gaussian random matrices). 

Local sample size: 

η̃k =
1
q

q

∑
i=1

F̃ (θ̃k; Γk,i)

F̃ : ℝp × 𝒮 → ℝp

{Γk,i ∼ PS |k = 0,⋯, K − 1, i ∈ [q]}
PS

𝒮

q ∈ ℕ

Start with . For each , 

update 

θ̃0 = θ*0 k = 0,⋯, K − 1

θ̃k+1 = θ̃k +
1
K

η̃k
well-conditioned 

randomized 
increments

 (unbiased)θ̃k

 with lower variance due to 
(i)  with smaller  or 
(ii) a larger 

θ̃k
Γ ∼ PS Cv

q

Assumption: unbiased  with low variance 

 For all , there exists some  such that 

(1)  

(2) 

F̃

θ ∈ ℝp Cv ≥ 0

𝔼Γ[ F̃ (θ, Γ)] = F(θ)

𝔼Γ[∥ F̃ (θ, Γ) − F(θ)∥2
2] ≤ Cv∥F(θ)∥2

2

̂θ k

θ*k

θ*0

Accumulative bias 
from regularization
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Randomized time integration: convergence  
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Assumptions: 

Unbiased  with low variance: , and (2) . 

Lipschitz and bounded : (1) , and (2) .

F̃ 𝔼Γ[ F̃ (θ, Γ)] = F(θ) 𝔼Γ[∥ F̃ (θ, Γ) − F(θ)∥2
2] ≤ Cv∥F(θ)∥2

2

F ∥F(θ) − F(θ′ )∥2 ≤ LF∥θ − θ′ ∥2 ∀ θ, θ′ ∥F(θ)∥2 ≤ BF∥θ∥2 ∀ θ

 (unbiased)θ̃k

 with lower variance due to 
(i)  with smaller  or 
(ii) a larger 

θ̃k
Γ ∼ PS Cv

q

̂θ k

θ*k

θ*0

Accumulative bias 
from regularization

Theorem: 

Start with . Let  where 

 for each . 

If , then  

 .

θ̃0 = θ*0 θ̃k+1 = θ̃k +
1
K

η̃k

η̃k =
1
q

q

∑
i=1

F̃ (θ̃k; Γk,i) k = 0,⋯, K − 1

max
0≤k≤K

∥θ̃k∥2 = Bθ

𝔼 [ℰ(θ̃1, ⋯, θ̃K)] ≤
B2

FB2
θe2LF

K
Cv

q
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q The expected total error converges as  increases.q



Randomized time integration for least-squares increments

8

Question: How to construct an unbiased  with low variance for  

s.t. ; ; and  is well-conditioned?

F̃ F(θ*k ) = arg min
η∈ℝp

∥J(θ*k )η − f(θ*k )∥2
2

𝔼Γ[ F̃ (θ, Γ)] = F(θ) 𝔼Γ[∥ F̃ (θ, Γ) − F(θ)∥2
2] ≤ Cv∥F(θ)∥2

2 F̃



Randomized least-squares increments: 

 

 is a random matrix drawn from a rotation-invariant distribution with  almost surely. 

Gaussian random matrix:  with  i.i.d. 

Random unitary embedding: 

F̃ (θ; Γ) =
p
m

Γ arg min
v∈ℝm

∥ (J(θ)Γ) v − f(θ)∥2
2 (0 < m ≤ p)

Γ ∈ ℝp×m rank(Γ) = m

Γ = G Gij ∼ 𝒩(0,1/m)

Γ = ortho(G)

Inspired by [Berman, Peherstorfer, NeurIPS2023]
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m )

2

} Larger   smaller 
 & lower variance

m ⇒
Cv
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m )

2

} Larger   smaller 
 & lower variance
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Is  well-conditioned?F̃ has better conditioning than :  for  with orthonormal columns.F̃ F κ(J(θ)Γ) ≤ κ(J(θ)) Γ



Sketching improves conditioning
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Theorem: For  with singular values  and a random unitary embedding 
, if  and , with probability at least 0.98, 

J ∈ ℝn×p σ1(J) ≥ ⋯ ≥ σp(J) > 0
Γ ∈ ℝp×m log(p) ≪ m ≪ p l = Ω(m)

κ(JΓ) ≤
σ1(J)
σl(J)

O ( p
m )

1 + O( m/p)
1 − O(log(l)/m)

≲
σ1(J)
σl(J)

p
m
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J(θ)
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For any poorly conditioned , 
taking an embedding dimension 

 slightly smaller than numerical 
rank  brings a 
well-conditioned matrix with  

J(θ)

m
r = rankτ(J(θ))

κ(J(θ)Γ) ≤ 1/τ

Variance-conditioning trade-off: 

Larger   smaller  

Smaller   smaller 

m ⇒ Cv

m ⇒ κ(J(θ)Γ)



Experiment: Synthetic dynamical system with J( ⋅ ) ≡ J
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Regularized time integration with TSVD or Tikhonov regularization leads to (large) accumulative bias. 

Randomized time integration becomes more accurate as  increases (variance decreases). 

Optimal  under variance-conditioning trade-off

q

m

Plain = direct time 
integration with poorly 
conditioned increments 

 and  
are the best regularization 
hyperparameters obtained 
from grid searches.

τ = 10−6 α = 10−13



Experiment: Approximating double-well quantum dynamics
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Following the setup in [Feischl, Lasser, Lubich, Nick, 2024] 

1D-Schrödinger Equation with neural 
network parametrization, updated via 
Neural Galerkin scheme ([Bruna, 
Peherstorfer, Vanden-Eijnden, JCP2024], 
[Berman, Peherstorfer, NeurIPS2023]) 

Randomized time integration ( ) 
outperforms the counterparts with TSVD 
and Tikhonov regularization. 

Randomized time integration ( ) 
becomes more accurate as  increases 
(variance decreases). 

For , convergence of relative 
error in  plateaus due to numerical 
error in basic operations like addition. 

Regularized time integration is sensitive 
to hyperparameters and can fail under a 
bad choice.

m = 40

m = 40
q

q > 10
q



Takeaways
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Problem: Stable time integration for discrete dynamical systems 
with poorly conditioned least-squares increments

Dong, Schwerdtner, Peherstorfer, “Randomize 
instead of Regularize: Stable Time Integration 
for Poorly Conditioned Dynamical Systems”, 
in preparation.
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Dong, Schwerdtner, Peherstorfer, “Randomize 
instead of Regularize: Stable Time Integration 
for Poorly Conditioned Dynamical Systems”, 
in preparation.
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Problem: Stable time integration for discrete dynamical systems 
with poorly conditioned least-squares increments

Our approach: Randomized time integration via unbiased randomized increments, 
with variance controlled by (i) the embedding dimension  and (ii) local sample size . 

The randomized least-squares increment is well-conditioned when . 

Trade-off between variance ( ) and conditioning leads to an optimal choice of .

m q

m ≲ rankτ(J(θ))

Cv m

 (unbiased)θ̃k
 with lower variance due to 

(i) smaller  or (ii) larger 
θ̃k

Cv q

Challenge: Classical approaches involve deterministic regularizations like TSVD 
and Tikhonov regularization, which could lead to bias accumulation over time.

̂θ k

θ*k

θ*0

Accumulative bias 
from regularization

Dong, Schwerdtner, Peherstorfer, “Randomize 
instead of Regularize: Stable Time Integration 
for Poorly Conditioned Dynamical Systems”, 
in preparation.

Thank you!


