Randomize instead of Regularize: Stable Time Integration for Poorly Conditioned Dynamical Systems

Yijun Dong Joint work with: Benjamin Peherstorfer, Paul Schwerdtner

Courant Institute of Mathematical Sciences, New York University

SIAM CSE25, March 5, 2025, Fort Worth, Texas

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Time integration of discrete dynamical systems

Initialize with $\theta_0^* \in \mathbb{R}^p$. For each step k =The increment function $F : \mathbb{R}^p \to \mathbb{R}^p$ involv $F(\theta_k^*) = \arg \min_{\eta \in \mathbb{R}^p}$ where $J(\theta) \in \mathbb{R}^{n \times p}$ satisfies $\operatorname{rank}(J(\theta)) =$

 \oplus <u>Goal</u>: Given θ_0^* and F, we aim to **approximate the trajectory** $\theta_1^*, \dots, \theta_K^*$.

0,1,...,
$$K - 1$$
, update $\theta_{k+1}^* = \theta_k^* + \frac{1}{K}F(\theta_k^*)$.
Wes a least-square problem:

$$\lim_{k \in \mathbb{R}^p} \|J(\theta_k^*)\eta - f(\theta_k^*)\|_2^2,$$

$$= p \text{ for all } \theta \in \mathbb{R}^p, \text{ and } f : \mathbb{R}^p \to \mathbb{R}^n.$$

Time integration of discrete dynamical systems

Initialize with $\theta_0^* \in \mathbb{R}^p$. For each step k =The increment function $F: \mathbb{R}^p \to \mathbb{R}^p$ involved $F(\theta_k^*) = \arg \max_{k \in \mathbb{Z}}$ where $J(\theta) \in \mathbb{R}^{n \times p}$ satisfies $\operatorname{rank}(J(\theta)) = p$ for all $\theta \in \mathbb{R}^p$, and $f : \mathbb{R}^p \to \mathbb{R}^n$. \oplus <u>Goal</u>: Given θ_0^* and F, we aim to **approximate the trajectory** $\theta_1^*, \dots, \theta_k^*$. [★] <u>Challenge</u>: Poorly conditioned least-squares problems: $\kappa(J(\theta)) = \sigma_1(J(\theta)) / \sigma_p(J(\theta)) \gg 1$. Question: Under finite precision, how to approximate $\theta_1^*, \dots, \theta_K^*$ with a low total error: $\mathscr{E}(\theta_1, \cdots, \theta_K) =$

$$0,1,\dots,K-1, \text{ update } \theta_{k+1}^* = \theta_k^* + \frac{1}{K}F(\theta_k^*).$$

ves a least-square problem:
$$\lim_{k \in \mathbb{R}^p} \|J(\theta_k^*)\eta - f(\theta_k^*)\|_2^2,$$

$$= \frac{1}{K} \sum_{i=1}^{K} \|\theta_i - \theta_i^*\|_2^2$$

Example: Neural Galerkin

 * With initial condition $u_0 : \mathcal{X} \to \mathbb{R}$, aim to solve: $\partial_t u(t, x) = f(t, x), \ u(0, x)$

Forward Euler:

 $u(t_{k+1}, x) = u(t_k, x) + f(t_k, x)/K, u(t_k, x)/K$

 $U(\theta_k, \cdot) : \mathcal{X} \to \mathbb{R}$ is a neural network parametrized by $\theta_k \in \mathbb{R}^p$.

The Neural Galerkin scheme based on the Dirac-Frenkel variational principle seeks

$$\eta_{k} = \arg\min_{\eta \in \mathbb{R}^{p}} \left\| \nabla_{\theta} U(\theta_{k}, \mathcal{X})\eta - f(\theta_{k}, \mathcal{X}) \right\|_{2}^{2}$$

for all $k = 0, \dots, K - 1$ and updates $\theta_{k+1} = \theta_k + \eta_k / K$. * The Jacobian matrix $\nabla_{\theta} U(\theta_k, \mathcal{X}) \in \mathbb{R}^{|\mathcal{X}| \times p}$ is often poorly condition/numerically low-rank. [Lubich, 2005], [Sapsis, Lermusieux, 2009], [Du, Zaki, PhRvE2021], [Anderson, Farazmand, SISC2022], [Berman, Peherstorfer, NeurIPS2023], [Bruna, Peherstorfer, Vanden-Eijnden, JCP2024], ...

$$u = u_0(x), \forall (t, x) \in [0, 1] \times \mathcal{X}.$$

$$t_0, x) = u_0(x), \forall k = 0, \dots, K-1, x \in \mathcal{X}.$$

* Nonlinear parametrization at each time step: $u(t_k, \cdot) = U(\theta_k, \cdot)$ for every $k = 0, \dots, K - 1$ where

Classical approach: deterministic regularization (truncated SVD)

Start with
$$\hat{\theta}_0 = \theta_0^*$$
. For each $k = 0, \dots, K - 1$, update $\hat{\theta}_{k+1} = \hat{\theta}_k + \frac{1}{K} \widehat{F}(\hat{\theta}_k)$ regularized increment function

Regularized integration with truncated SVD (TSVD) increments: $\widehat{F}(\widehat{\theta}_k) = \llbracket J(\widehat{\theta}_k) \rrbracket_r^{\dagger} f(\widehat{\theta}_k)$ $^{\oplus}r = \operatorname{rank}_{\tau}(J(\hat{\theta}_k)) < p$ is the numerical rank w.r.t. a given precision $0 < \tau \ll 1$.

> *rank_{\(\tau\)}(J) = min{ $m \in [p] | ||J - [[J]]_m ||_2 < \tau ||J||_2$ } where $\llbracket J \rrbracket_m$ denotes the optimal rank-*m* approximation of J from TSVD.

Limitation of deterministic regularization

Regularized integration with TSVD increments:

Deterministic regularization leads to accumulation of bias $^{\mbox{\tiny \ensuremath{\$}}}$ Consider toy dynamics with a constant $J(\ \cdot\)\equiv J$ that admits a low numerical rank $\operatorname{rank}_{\tau}(J) = r < p$. ▲ Let $P_r \in \mathbb{R}^{p \times p}$ be the orthogonal projector onto $Row(\llbracket J \rrbracket_r)$. If $\left\| (I_p - P_r) \left(\frac{1}{K} \sum_{j=0}^{k-1} f(\theta_j^*) \right) \right\| \ge b_{-r}$ for every $k = 0, \dots, K-1$, then $\mathscr{E}(\widehat{\theta}_1, \cdots, \widehat{\theta}_K)$

$$\widehat{\theta}_{k+1} = \widehat{\theta}_k + \frac{1}{K} [[J(\widehat{\theta}_k)]]_r^{\dagger} f(\widehat{\theta}_k) \text{ for } k = 0, \cdots, K-1$$

Limitation of deterministic regularization

Regularized integration with TSVD increments:

Deterministic regularization leads to accumulation of bias $^{\mbox{\tiny \ensuremath{\$}}}$ Consider toy dynamics with a constant $J(\ \cdot\)\equiv J$ that admits a low numerical rank $\operatorname{rank}_{\tau}(J) = r < p$. ▲ Let $P_r \in \mathbb{R}^{p \times p}$ be the orthogonal projector onto $\text{Row}(\llbracket J \rrbracket_r)$. If $\left\| (I_p - P_r) \left(\frac{1}{K} \sum_{j=0}^{k-1} f(\theta_j^*) \right) \right\| \ge b_{-r}$ for every $k = 0, \dots, K-1$, then $\frac{b_{-r}^2}{2 - 2}$ Lower bound of error due to accumulation $3\sigma_{r+1}^{2}(J$ of bias over time

$$\widehat{\theta}_{k+1} = \widehat{\theta}_k + \frac{1}{K} \llbracket J(\widehat{\theta}_k) \rrbracket_r^{\dagger} f(\widehat{\theta}_k) \text{ for } k = 0, \cdots, K-1$$

Limitation of deterministic regularization

Regularized integration with TSVD increments:

Deterministic regularization leads to accumulation of bias ^b Consider toy dynamics with a constant $J(\cdot) \equiv J$ that admits a low numerical rank $\operatorname{rank}_{\tau}(J) = r < p$. [♠] Let $P_r \in \mathbb{R}^{p \times p}$ be the orthogonal projector onto $\text{Row}(\llbracket J \rrbracket_r)$. If $(I_p - P_r) \left(\frac{1}{K} \sum_{i=0}^{k-1} f(\theta_i^*) \right) \ge b_{-r}$ for every $k = 0, \dots, K-1$, then b_{-r}^2 Lower bound of error due to accumulation $\mathscr{E}(\widehat{\theta}_1, \cdots, \widehat{\theta}_K)$ $3\sigma_{r+1}^{2}(J$ of bias over time

$$\widehat{\theta}_{k+1} = \widehat{\theta}_k + \frac{1}{K} \llbracket J(\widehat{\theta}_k) \rrbracket_r^{\dagger} f(\widehat{\theta}_k) \text{ for } k = 0, \cdots, K-1$$

Accumulation of bias also occurs under other deterministic regularizations like Tikhonov regularization:

 $\widehat{F}(\widehat{\theta}_k) = \arg\min_{\eta \in \mathbb{R}^p} \|J(\widehat{\theta}_k)\eta - f(\widehat{\theta}_k)\|_2^2 + \alpha \|\eta\|_2^2$

Start with
$$\widetilde{\theta}_{0} = \theta_{0}^{*}$$
. For each $k = 0, \dots, K - 1$,
update $\widetilde{\theta}_{k+1} = \widetilde{\theta}_{k} + \left(\frac{1}{K}\widetilde{\eta}_{k}\right)$ well-conditioned
randomized
increments
Randomized increments: $\widetilde{\eta}_{k} = \frac{1}{q} \sum_{i=1}^{q} \widetilde{F}(\widetilde{\theta}_{k}; \Gamma_{k,i})$
Randomized increment function: $\widetilde{F} : \mathbb{R}^{p} \times S \rightarrow$
 $\{\Gamma_{k,i} \sim P_{S} | k = 0, \dots, K - 1, i \in [q]\}$ are drawn
i.i.d. from a given distribution P_{S} supported on sor
set S (e.g., Gaussian random matrices).
Local sample size: $q \in \mathbb{N}$

Start with
$$\widetilde{\theta}_0 = \theta_0^*$$
. For each $k = 0, \dots, K - 1$,
update $\widetilde{\theta}_{k+1} = \widetilde{\theta}_k + \frac{1}{K} \widetilde{\eta}_k$ well-conditioned
randomized
increments
Randomized increments: $\widetilde{\eta}_k = \frac{1}{q} \sum_{i=1}^q \widetilde{F}(\widetilde{\theta}_k; \Gamma_{k,i})$
Randomized increment function: $\widetilde{F} : \mathbb{R}^p \times S \to \mathbb{R}^p$
 $\{\Gamma_{k,i} \sim P_S | k = 0, \dots, K - 1, i \in [q]\}$ are drawn
i.i.d. from a given distribution P_S supported on some
set S (e.g., Gaussian random matrices).
Local sample size: $q \in \mathbb{N}$

Start with
$$\widetilde{\theta}_0 = \theta_0^*$$
. For each $k = 0, \dots, K - 1$,
update $\widetilde{\theta}_{k+1} = \widetilde{\theta}_k + \frac{1}{K} \widetilde{\eta}_k$ well-conditioned
randomized
increments
Randomized increments: $\widetilde{\eta}_k = \frac{1}{q} \sum_{i=1}^q \widetilde{F}(\widetilde{\theta}_k; \Gamma_{k,i})$
Randomized increment function: $\widetilde{F} : \mathbb{R}^p \times S \to \mathbb{R}^p$
 $\{\Gamma_{k,i} \sim P_S | k = 0, \dots, K - 1, i \in [q]\}$ are drawn
i.i.d. from a given distribution P_S supported on some
set S (e.g., Gaussian random matrices).
Local sample size: $q \in \mathbb{N}$

Start with
$$\widetilde{\theta}_0 = \theta_0^*$$
. For each $k = 0, \dots, K - 1$,
update $\widetilde{\theta}_{k+1} = \widetilde{\theta}_k + \frac{1}{K} \widetilde{\eta}_k$ well-conditioned
randomized
increments
Randomized increments: $\widetilde{\eta}_k = \frac{1}{q} \sum_{i=1}^q \widetilde{F}(\widetilde{\theta}_k; \Gamma_{k,i})$
Randomized increment function: $\widetilde{F} : \mathbb{R}^p \times S \to \mathbb{R}^p$
 $\{\Gamma_{k,i} \sim P_S | k = 0, \dots, K - 1, i \in [q]\}$ are drawn
i.i.d. from a given distribution P_S supported on some
set S (e.g., Gaussian random matrices).
Local sample size: $q \in \mathbb{N}$

Randomized time integration: convergence

Assumptions:

[♠] Unbiased \widetilde{F} with low variance: $\mathbb{E}_{\Gamma}[\widetilde{F}(\theta, \Gamma)] = F(\theta)$, and (2) $\mathbb{E}_{\Gamma}[\|\widetilde{F}(\theta, \Gamma) - F(\theta)\|_{2}^{2}] \leq C_{\nu}\|F(\theta)\|_{2}^{2}$. [♠] Lipschitz and bounded F: (1) $\|F(\theta) - F(\theta')\|_{2} \leq L_{F}\|\theta - \theta'\|_{2} \forall \theta, \theta'$, and (2) $\|F(\theta)\|_{2} \leq B_{F}\|\theta\|_{2} \forall \theta$.

$$\begin{split} & \overline{\text{Theorem}}:\\ & \text{Start with } \widetilde{\theta}_0 = \theta_0^*. \text{ Let } \widetilde{\theta}_{k+1} = \widetilde{\theta}_k + \frac{1}{K} \widetilde{\eta}_k \text{ where} \\ & \widetilde{\eta}_k = \frac{1}{q} \sum_{i=1}^q \widetilde{F}(\widetilde{\theta}_k; \Gamma_{k,i}) \text{ for each } k = 0, \cdots, K-1.\\ & \text{If } \max_{0 \leq k \leq K} \|\widetilde{\theta}_k\|_2 = B_{\theta}, \text{ then} \\ & \mathbb{E} \left[\mathscr{C}(\widetilde{\theta}_1, \cdots, \widetilde{\theta}_K) \right] \leq \frac{B_F^2 B_{\theta}^2 e^{2L_F}}{K} \frac{C_v}{q}. \end{split}$$

Randomized time integration: convergence

Assumptions:

[♠] Unbiased \widetilde{F} with low variance: $\mathbb{E}_{\Gamma}[\widetilde{F}(\theta, \Gamma)] = F(\theta)$, and (2) $\mathbb{E}_{\Gamma}[\|\widetilde{F}(\theta, \Gamma) - F(\theta)\|_{2}^{2}] \leq C_{v}\|F(\theta)\|_{2}^{2}$. [♠] Lipschitz and bounded F: (1) $\|F(\theta) - F(\theta')\|_{2} \leq L_{F}\|\theta - \theta'\|_{2} \forall \theta, \theta'$, and (2) $\|F(\theta)\|_{2} \leq B_{F}\|\theta\|_{2} \forall \theta$.

$$\begin{split} & \overline{\text{Theorem}}:\\ & \text{Start with } \widetilde{\theta}_0 = \theta_0^*. \text{ Let } \widetilde{\theta}_{k+1} = \widetilde{\theta}_k + \frac{1}{K} \widetilde{\eta}_k \text{ where} \\ & \widetilde{\eta}_k = \frac{1}{q} \sum_{i=1}^q \widetilde{F}(\widetilde{\theta}_k; \Gamma_{k,i}) \text{ for each } k = 0, \cdots, K-1.\\ & \text{If } \max_{0 \leq k \leq K} \|\widetilde{\theta}_k\|_2 = B_{\theta}, \text{ then} \\ & \mathbb{E} \left[\mathscr{C}(\widetilde{\theta}_1, \cdots, \widetilde{\theta}_K) \right] \leq \frac{B_F^2 B_{\theta}^2 e^{2L_F}}{K} \frac{C_v}{q}. \end{split}$$

The expected total error converges as q increases.

<u>Question</u>: How to construct an unbiased \widetilde{F} with low variance for $F(\theta_k^*) = \arg\min_{\eta \in \mathbb{R}^p} \|J(\theta_k^*)\eta - f(\theta_k^*)\|_2^2$ s.t. $\mathbb{E}_{\Gamma}[\widetilde{F}(\theta,\Gamma)] = F(\theta); \mathbb{E}_{\Gamma}[\|\widetilde{F}(\theta,\Gamma) - F(\theta)\|_{2}^{2}] \leq C_{v}\|F(\theta)\|_{2}^{2}; \text{ and } \widetilde{F} \text{ is well-conditioned?}$

<u>Question</u>: How to construct an unbiased \widetilde{F} with low variance for $F(\theta_k^*) = \arg\min_{\eta \in \mathbb{R}^p} \|J(\theta_k^*)\eta - f(\theta_k^*)\|_2^2$ s.t. $\mathbb{E}_{\Gamma}[\widetilde{F}(\theta,\Gamma)] = F(\theta); \mathbb{E}_{\Gamma}[\|\widetilde{F}(\theta,\Gamma) - F(\theta)\|_{2}^{2}] \leq C_{\nu}\|F(\theta)\|_{2}^{2}; \text{ and } \widetilde{F} \text{ is well-conditioned}?$

Randomized least-squares increments:

$$\widetilde{F}(\theta; \Gamma) = \frac{p}{m} \Gamma \arg\min_{v \in \mathbb{R}^m} \|$$

 ${}^{ m} \Gamma \in \mathbb{R}^{p \times m}$ is a random matrix drawn from a **rotation-invariant** distribution with $rank(\Gamma) = m$ almost surely. • Gaussian random matrix: $\Gamma = G$ with $G_{ii} \sim \mathcal{N}(0, 1/m)$ i.i.d.

* Random unitary embedding: $\Gamma = \operatorname{ortho}(G)$

Inspired by [Berman. Peherstorfer. NeurIPS2023]

 $(J(\theta)\Gamma) v - f(\theta) \|_2^2 \quad (0 < m \le p)$

<u>Question</u>: How to construct an unbiased \widetilde{F} with low variance for $F(\theta_k^*) = \arg\min_{\eta \in \mathbb{R}^p} \|J(\theta_k^*)\eta - f(\theta_k^*)\|_2^2$ s.t. $\mathbb{E}_{\Gamma}[\widetilde{F}(\theta,\Gamma)] = F(\theta); \mathbb{E}_{\Gamma}[\|\widetilde{F}(\theta,\Gamma) - F(\theta)\|_{2}^{2}] \leq C_{v}\|F(\theta)\|_{2}^{2}; \text{ and } \widetilde{F} \text{ is well-conditioned}?$

Randomized least-squares increments:

$$\widetilde{F}(\theta; \Gamma) = \frac{p}{m} \Gamma \arg\min_{v \in \mathbb{R}^m} \|$$

 ${}^{ \ m} \Gamma \in \mathbb{R}^{p \times m}$ is a random matrix drawn from a **rotation-invariant** distribution with $rank(\Gamma) = m$ almost surely. • Gaussian random matrix: $\Gamma = G$ with $G_{ii} \sim \mathcal{N}(0, 1/m)$ i.i.d.

* Random unitary embedding: $\Gamma = \operatorname{ortho}(G)$

 \widetilde{F} is unbiased with low variance associated with

Inspired by [Berman. Peherstorfer. NeurIPS2023]

 $(J(\theta)\Gamma) v - f(\theta)\|_2^2 \quad (0 < m \le p)$

th
$$C_v = \max\left\{1, \left(\frac{p-m}{m}\right)^2\right\}$$
. Larger $m \Rightarrow$ smaller C_v & lower variance

<u>Question</u>: How to construct an unbiased \widetilde{F} with low variance for $F(\theta_k^*) = \arg\min_{\eta \in \mathbb{R}^p} \|J(\theta_k^*)\eta - f(\theta_k^*)\|_2^2$ s.t. $\mathbb{E}_{\Gamma}[\widetilde{F}(\theta,\Gamma)] = F(\theta); \mathbb{E}_{\Gamma}[\|\widetilde{F}(\theta,\Gamma) - F(\theta)\|_{2}^{2}] \leq C_{v}\|F(\theta)\|_{2}^{2}; \text{ and } \widetilde{F} \text{ is well-conditioned}?$

Randomized least-squares increments:

$$\widetilde{F}(\theta; \Gamma) = \frac{p}{m} \Gamma \arg\min_{v \in \mathbb{R}^m} \|$$

 ${}^{ \ m} \Gamma \in \mathbb{R}^{p \times m}$ is a random matrix drawn from a **rotation-invariant** distribution with $rank(\Gamma) = m$ almost surely. • Gaussian random matrix: $\Gamma = G$ with $G_{ii} \sim \mathcal{N}(0, 1/m)$ i.i.d.

* Random unitary embedding: $\Gamma = \operatorname{ortho}(G)$

 \widetilde{F} is unbiased with low variance associated with

F has better conditioning than $F: \kappa(J(\theta)\Gamma) \leq \kappa(J(\theta)\Gamma)$

Inspired by [Berman. Peherstorfer. NeurIPS2023]

 $(J(\theta)\Gamma) v - f(\theta)\|_2^2 \quad (0 < m \le p)$

th
$$C_v = \max\left\{1, \left(\frac{p-m}{m}\right)^2\right\}$$
.
Larger $m \Rightarrow$ smaller C_v & lower variance
 θ)) for Γ with orthonormal columns. Is \widetilde{F} well-condition

Sketching improves conditioning

<u>Theorem</u>: For $J \in \mathbb{R}^{n \times p}$ with singular values $\sigma_1(J) \ge \cdots \ge \sigma_p(J) > 0$ and a random unitary embedding

$$\sqrt{\frac{1 + O(\sqrt{m/p})}{1 - O(\log(l)/m)}} \lesssim \frac{\sigma_1(J)}{\sigma_l(J)} \sqrt{\frac{p}{m}}$$

Sketching improves conditioning

<u>Theorem</u>: For $J \in \mathbb{R}^{n \times p}$ with singular values $\sigma_1(J) \ge \cdots \ge \sigma_p(J) > 0$ and a random unitary embedding

$$\sqrt{\frac{1 + O(\sqrt{m/p})}{1 - O(\log(l)/m)}} \lesssim \frac{\sigma_1(J)}{\sigma_l(J)} \sqrt{\frac{p}{m}}$$

For any poorly conditioned $J(\theta)$, taking an embedding dimension *m* slightly smaller than numerical rank $r = \operatorname{rank}_{\tau}(J(\theta))$ brings a well-conditioned matrix with

$$(\theta)\Gamma) \le 1/\tau$$

Sketching improves conditioning

<u>Theorem</u>: For $J \in \mathbb{R}^{n \times p}$ with singular values $\sigma_1(J) \ge \cdots \ge \sigma_p(J) > 0$ and a random unitary embedding

$$\sqrt{\frac{1 + O(\sqrt{m/p})}{1 - O(\log(l)/m)}} \lesssim \frac{\sigma_1(J)}{\sigma_l(J)} \sqrt{\frac{p}{m}}$$

For any poorly conditioned $J(\theta)$, taking an embedding dimension *m* slightly smaller than numerical rank $r = \operatorname{rank}_{\tau}(J(\theta))$ brings a well-conditioned matrix with

$$(\theta)\Gamma) \le 1/\tau$$

Variance-conditioning trade-off:

 $^{\mbox{\tiny \baselineskip}}$ Larger $m \Rightarrow$ smaller C_{ν}

 $^{\mbox{\tiny \sc smaller}}$ Smaller $m \Rightarrow$ smaller $\kappa(J(\theta)\Gamma)$

Experiment: Synthetic dynamical system with $J(\cdot) \equiv J$

Regularized time integration with TSVD or Tikhonov regularization leads to (large) accumulative bias.

Randomized time integration becomes more accurate as q increases (variance decreases).

Optimal *m* under variance-conditioning trade-off

10

Experiment: Approximating double-well quantum dynamics

Following the setup in [Feischl, Lasser, Lubich, Nick, 2024]

- 1D-Schrödinger Equation with neural network parametrization, updated via Neural Galerkin scheme ([Bruna, Peherstorfer, Vanden-Eijnden, JCP2024], [Berman, Peherstorfer, NeurIPS2023])
- * Randomized time integration (m = 40) outperforms the counterparts with TSVD and Tikhonov regularization.
- * Randomized time integration (m = 40)
 becomes more accurate as q increases
 (variance decreases).
 - For q > 10, convergence of relative error in q plateaus due to numerical error in basic operations like addition.
- Regularized time integration is sensitive to hyperparameters and can fail under a bad choice.

Problem: Stable time integration for discrete dynamical systems with poorly conditioned least-squares increments

Dong, Schwerdtner, Peherstorfer, "Randomize instead of Regularize: Stable Time Integration for Poorly Conditioned Dynamical Systems", in preparation.

Problem: Stable time integration for discrete dynamical systems with poorly conditioned least-squares increments

<u>Challenge</u>: Classical approaches involve deterministic regularizations like TSVD and Tikhonov regularization, which could lead to bias accumulation over time.

Dong, Schwerdtner, Peherstorfer, "Randomize instead of Regularize: Stable Time Integration for Poorly Conditioned Dynamical Systems", in preparation.

Problem: Stable time integration for discrete dynamical systems with poorly conditioned least-squares increments

<u>Challenge</u>: Classical approaches involve **deterministic regularizations** like TSVD and Tikhonov regularization, which could lead to bias accumulation over time.

Our approach: Randomized time integration via unbiased randomized increments, with variance controlled by (i) the embedding dimension m and (ii) local sample size q.

^{*} The randomized least-squares increment is well-conditioned when $m \leq \operatorname{rank}_{\tau}(J(\theta))$

 * Trade-off between variance (C_{v}) and conditioning leads to an optimal choice of m.

Dong, Schwerdtner, Peherstorfer, "Randomize instead of Regularize: Stable Time Integration for Poorly Conditioned Dynamical Systems", in preparation.

Problem: Stable time integration for discrete dynamical systems with poorly conditioned least-squares increments

<u>Challenge</u>: Classical approaches involve **deterministic regularizations** like TSVD and Tikhonov regularization, which could lead to bias accumulation over time.

Our approach: Randomized time integration via unbiased randomized increments, with variance controlled by (i) the embedding dimension m and (ii) local sample size q.

^{*} The randomized least-squares increment is well-conditioned when $m \leq \operatorname{rank}_{\tau}(J(\theta))$.

 * Trade-off between variance (C_{v}) and conditioning leads to an optimal choice of m.

Dong, Schwerdtner, Peherstorfer, "Randomize instead of Regularize: Stable Time Integration for Poorly Conditioned Dynamical Systems", in preparation.

(unbiased)

Problem: Stable time integration for discrete dynamical systems with poorly conditioned least-squares increments

<u>Challenge</u>: Classical approaches involve **deterministic regularizations** like TSVD and Tikhonov regularization, which could lead to bias accumulation over time.

Our approach: Randomized time integration via unbiased randomized increments, with variance controlled by (i) the embedding dimension *m* and (ii) local sample size *q*.

^{*} The randomized least-squares increment is well-conditioned when $m \leq \operatorname{rank}_{\tau}(J(\theta))$

 * Trade-off between variance (C_{v}) and conditioning leads to an optimal choice of m.

Dong, Schwerdtner, Peherstorfer, "Randomize instead of Regularize: Stable Time Integration for Poorly Conditioned Dynamical Systems", in preparation.

(unbiased)

2

