Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension

Yijun Dong

Courant Institute of Mathematical Sciences, New York University

John Hopkins University Postdoc Seminar, Apr 2, 2025

Yunai Li SJTU

Yicheng Li NYU

Joint work with

Jason D. Lee Princeton

Qi Lei NYU

Superalignment \rightarrow weak-to-strong (W2S) generalization

Better W2S generalization on easier tasks

How does W2S happen on easy tasks where weak and strong models both have low approximation errors?

- Difficulty: NLP tasks < Chess puzzles < ChatGPT reward modeling
- Approximation error = error of the model trained over the population
- Better W2S ⇔ performance gap recovery closer to 1

W2S-weak gap PGR = ceiling-weak gap

Intrinsic dimension

Occam's razor: When faced with multiple hypotheses, the simplest is usually the best

Intrinsic dimension = the minimal number of model parameters needed to achieve (nearly) optimal performance on a specific task

Low intrinsic dimension of finetuning

Larger pretrained language models have lower intrinsic dimensions on downstream tasks!

Finetuning with low intrinsic dimensions

Downstream task

- $(x, y) \sim \mathcal{D}(f_*)$ s.t. $y = f_*(x) + z$ with i.i.d. noise $z \sim \mathcal{N}(0, \sigma^2)$ and $|f_*(x)| < 1$ a.s.
- Want to learn the ground truth function $f_* : \mathscr{X} \to \mathbb{R}$ given access to two datasets:
 - Labeled (small) dataset: $\widetilde{X} \in \mathcal{X}^n$ with noisy labels $\widetilde{y} \in \mathbb{R}^n$
 - Unlabeled (large) dataset: $X \in \mathcal{X}^N$ with unknown labels $y \in \mathbb{R}^N$

Finetuning (FT) \approx linear probing on gradient features

- FT fall in kernel regime: $f(x \mid \theta) = \phi(x)^{\mathsf{T}} \theta$ with finetunable parameter $\theta \in \mathbb{R}^d$
 - Nonlinear case: $\phi(x) = \nabla_{\theta} f(x | \theta_0)$ = gradient at pretrained initialization $\theta_0 \in \mathbb{R}^d$
- Weak model $\phi_w : \mathcal{X} \to \mathbb{R}^d$ produces
- Strong model $\phi_s: \mathcal{X} \to \mathbb{R}^d$ produces

 $\Sigma_{w} = \mathbb{E}[\phi_{w}(x)\phi_{w}(x)^{\mathsf{T}}]$ $\Sigma_{s} = \mathbb{E}[\phi_{s}(x)\phi_{s}(x)^{\mathsf{T}}]$

$$\Phi_{w} = \phi_{w}(\widetilde{X}) \in \mathbb{R}^{n \times d}, \ \Phi_{w} = \phi_{w}(X) \in \mathbb{R}^{N \times d}$$

oduces $\Phi_{s} = \phi_{s}(\widetilde{X}) \in \mathbb{R}^{n \times d}, \ \Phi_{s} = \phi_{s}(X) \in \mathbb{R}^{N \times d}$
$$\operatorname{rank}(\Sigma_{w}) = d_{w} \ll d \qquad \operatorname{rank}(\Sigma_{s}) = d_{s} \ll d$$

Weak v.s. strong: model capacity + similarity

Representation <u>accuracy</u> — **FT approxima** $\rho_s := \min_{\theta \in \mathbb{R}^d} \mathbb{E}[(\phi_s(x)^{\mathsf{T}}\theta - f_*(x))^2]$ We are interested in the variance-dominate

Representation <u>similarity</u> — correlation din $\Sigma_s = \begin{array}{c} V_s & \Sigma_s & V_s^{\top} \\ d \times d_s & d_s \times d_s \end{array}$

The correlation dimension of $(\phi_{_S},\phi_{_W})$ is $d_{_{S\wedge}}$

dimensions:

$$d \quad \operatorname{rank}(\Sigma_s) = d_s \ll d$$
ation error: $0 \le \rho_s \le \rho_w \le 1$ where
and $\rho_w := \min_{\theta \in \mathbb{R}^d} \mathbb{E}[(\phi_w(x)^\top \theta - f_*(x))^2].$
and regime $\rho_s + \rho_w \ll \sigma^2$.

Representation similarity — correlation dimension: Consider spectral decompositions

and
$$\Sigma_w = V_w \sum_{\substack{d \times d_w \\ d_w \times d_w}} V_w^{\top}$$
.
 $\sum_{w} = \|V_s^{\top} V_w\|_F^2 \text{ s.t. } 0 \le d_{s \wedge w} \le \min\{d_s, d_w\}.$

W2S finetuning as ridgeless regression

Ridgeless regression: with all $\alpha \rightarrow 0$

$$\arg \min_{\theta \in \mathbb{R}^{d}} \frac{1}{n} \| \widetilde{\Phi}_{w} \theta - \widetilde{y} \|_{2}^{2} + \alpha \| \theta \|_{2}^{2}$$
W2S
$$\min_{\theta \in \mathbb{R}^{d}} \frac{1}{N} \| \Phi_{s} \theta - \Phi_{w} \theta_{w} \|_{2}^{2} + \alpha \| \theta \|_{2}^{2}$$

$$\frac{W2S v.s. s}{V}$$
Is the addit compute of

$$\arg\min_{\theta\in\mathbb{R}^d}\frac{1}{n}\|\widetilde{\Phi}_s\theta-\widetilde{y}\|_2^2+\alpha\|\theta\|_2^2$$

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n+N} \left\| \begin{bmatrix} \widetilde{\Phi}_s \\ \Phi_s \end{bmatrix} \theta - \begin{bmatrix} \widetilde{y} \\ y \end{bmatrix} \right\|_2^2 + \alpha \|\theta\|_2^2$$

W2S generalization error: ridgeless regression

With randomness in *f* from training data: ER(f) = Var(f) + Bias(f) where $Var(f) = \mathbb{E}_{x}[\mathbb{E}_{f}[(f(x) - \mathbb{E}_{f}[f(x)])^{2}]]$ $Bias(f) = \mathbb{E}_{x}[(\mathbb{E}_{f}[f(x)] - f_{*}(x))^{2}]$

Theorem [**D**LLLL25]. Assume $\phi_s(x)$ is zero-mean subgaussian and $\phi_w(x) \sim \mathcal{N}(0_d, \Sigma_w)$ (can be relaxed to subgaussian), for $n > d_w + 1$:

$$\operatorname{Var}(f_{w2s}) = \frac{\sigma^2}{n - d_w - 1} \left(d_{s \wedge w} + \frac{d_s}{N} (d_w - d_{s \wedge w}) \right)$$
$$\operatorname{Bias}(f_{w2s}) \leq \rho_w + \rho_s$$

Intuition: how does variance reduction in W2S happen?

 $\mathcal{V}_{s} = \text{Range}(\Sigma)$

$$\Sigma_{s}, \mathcal{V}_{w} = \operatorname{Range}(\Sigma_{w})$$

$$\frac{w}{n} + \binom{d_{s}}{N} \frac{d_{w} - d_{s \wedge w}}{n}$$

$$\frac{d_{w} - d_{s \wedge w}}{n}$$

$$\phi_w(x)^{\mathsf{T}}\theta_w$$

Psuedolabel error in $\mathcal{V}_{W} \setminus \mathcal{V}_{S}$ can be viewed as independent label noise w.r.t. the orthogonal strong features \mathcal{V}_{s} , variance from which reduces proportionally to d_s/N .

W2S generalization error: ridge regression

Choose some suitable
$$\alpha_w, \alpha_{w2s} > 0$$
 s.t.
 $\theta_w = \arg \min_{\theta \in \mathbb{R}^d} \frac{1}{n} \|\widetilde{\Phi}_w \theta - \widetilde{y}\|_2^2 + \alpha_w \|\theta\|_2^2$
 $\theta_{w2s} = \arg \min_{\theta \in \mathbb{R}^d} \frac{1}{N} \|\Phi_s \theta - \Phi_w \theta_w\|_2^2 + \alpha_{w2s} \|\theta\|_2^2$

Theorem [DLLLL25]. Let
$$\varrho_w = \|\Sigma_w^{-1/2} \Sigma_*^{1/2} \theta_*\|_2^2$$
,
 $\varrho_s = \|\Sigma_s^{-1/2} \Sigma_*^{1/2} \theta_*\|_2^2$. For ridge parameters
 $\alpha_w = \frac{\sigma^2 \operatorname{tr}(\Sigma_s \Sigma_w)}{4nN} \frac{\varrho_s}{\varrho_w^2}$ and $\alpha_{w2s} = \frac{\sigma^2 \operatorname{tr}(\Sigma_s \Sigma_w)}{4nN} \frac{\varrho_w}{\varrho_s^2}$,
 $\operatorname{ER}(f_{w2s}) \leq 3 \left(\frac{\sigma^2}{4nN} \operatorname{tr}(\Sigma_s \Sigma_w) \varrho_s \varrho_w\right)^{1/3}$.

- $f_*(x) = \phi_*(x)^\top \theta_*, \ \theta_* \in \mathbb{R}^d, \ \mathbb{E}[\phi_*(x)\phi_*(x)^\top] = \Sigma_*$
- Positive-definite covariances: $\Sigma_w, \Sigma_s, \Sigma_* > 0$
- Normalized features: $\|\Sigma_w\|_2 \asymp \|\Sigma_s\|_2 \asymp \|\Sigma_*\|_2 \asymp 1$
- Intrinsic dimensions: $\mathrm{tr}(\Sigma_w) \lesssim d_w$, $\mathrm{tr}(\Sigma_s) \lesssim d_s$
- <u>Multiplicative</u> sample complexity:

$$nN \asymp \sigma^2 \operatorname{tr}(\Sigma_s \Sigma_w) \varrho_s \varrho_w$$

• Weak-strong similarity ("correlation dimension $d_{S \wedge W}$ "):

 $\operatorname{tr}(\Sigma_{s}\Sigma_{w}) \lesssim \min\{\operatorname{tr}(\Sigma_{s}), \operatorname{tr}(\Sigma_{w})\}$

• Coverage ("FT approximation error"): Q_w , Q_s are small if the dominating eigenspaces of Σ_w , Σ_s cover that of Σ_*

Larger discrepancy (l

Performance gap recove

With negligible FT approx when $n \gtrsim d_w$ and $N \gtrsim d_s$ $PGR \ge 1 - O(d_{s \land w}/d_w)$ and $OPR \ge \Omega(d_s/d_{s \land w})$

ower
$$d_{S \wedge W}$$
) \rightarrow better W2S

ry: PGR =
$$\frac{\text{ER}(f_w) - \text{ER}(f_{w2s})}{\text{ER}(f_w) - \text{ER}(f_c)}$$

ratio: OPR =
$$\frac{\text{ER}(f_s)}{\text{ER}(f_{w2s})}$$

timation error
$$(\rho_w + \rho_s)/\sigma^2 \rightarrow 0$$
,
 $(d_w/d_{s \wedge w} - 1)$, we have

Synthetic experiments

 $f_*(x) = x^{\mathsf{T}} \Lambda_*^{1/2} \theta_*$ where $\Lambda_* = \operatorname{diag}(\lambda_1^*, \dots, \lambda_d^*)$ $\lambda_{i}^{*} = i^{-1}$ for $1 \le i \le 300$, $\lambda_{i}^{*} = 0$ for i > 300

 Our bounds provide reasonably tight characterization for the generalization error, PGR, and OPR. • W2S is more beneficial with limited label data n - PGR and OPR decrease as n increases!

UTKFace regression

Lower $d_{s \wedge w}/d_w \rightarrow \text{better W2S}$

Larger variance \rightarrow more pronounced W2S $d_w = 522$ (ResNet50), $d_s = 443$ (CLIP-B32), $d_{s \wedge w} = 301.06$ N = 10000n = 16008.0 0.80 0.6 0.75 ස් 0.70 0.4 Injected label noise $\varsigma = 0.0$ 0.65 0.2 Injected label noise $\zeta = 10.0$ 0.60 Injected label noise $\varsigma = 20.0$ 0.0 0.55 800 1000 1200 1400 1600 1800 2000 2500 5000 7500 10000 12500 15000 17500 12 10 Injected label noise $\zeta = 5.0$ 3 Injected label noise $\zeta = 20.0$ OPR 1000 1200 2500 5000 7500 10000 12500 15000 17500 1400 1600 1800 2000 800 Ν n

• Lower $d_{s \wedge w}/d_w$ (larger discrepancy between ϕ_w, ϕ_s) brings higher PGR and OPR.

Takeaway: teacher-student discrepancy \rightarrow better W2S

How does W2S happen on easy tasks where weak and strong models both have low approximation errors?

Through lens of low intrinsic dimension:

Thank you! Happy to take any questions

Dong, Yijun, Yicheng Li, Yunai Li, Jason D. Lee, and Qi Lei. "Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension." *arXiv preprint* arXiv:2502.05075 (2025).

References

Burns, Collin, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner, Yining Chen et al. "Weak-to-strong generalization: Eliciting strong capabilities with weak supervision." arXiv preprint arXiv:2312.09390 (2023).

Aghajanyan, Armen, Luke Zettlemoyer, and Sonal Gupta. "Intrinsic dimensionality explains the effectiveness of language model fine-tuning." arXiv preprint arXiv:2012.13255 (2020).