# Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension

Yijun Dong

Courant Institute of Mathematical Sciences, New York University

Flatiron CCM ML Seminar, May 30, 2025





Yunai Li SJTU



#### Yicheng Li NYU

#### Joint work with



#### Jason D. Lee Princeton



Qi Lei NYU

# Superalignment $\rightarrow$ weak-to-strong (W2S) generalization

#### Traditional ML

- Student has brand-new knowledge unknown to human (lower approximation error)
  - Lang et al., 2024, Shin et al., 2024, Ildiz et al., 2024, Wu & Sahai, 2024, and more
- Student is more efficient in utilizing existing knowledge (lower estimation error)



Supervisor

Student Supervisor Supervisor Student Student When and how does weak-to-strong generalization happen?

#### Superalignment

#### **W2S**

[Burns et al, ICML2024] Human level

### **Better W2S generalization on easier tasks**



- Difficulty (by strong ceiling performance): NLP < Chess < ChatGPT reward model
- Approximation error = error of the model trained over the population
- Better W2S ⇔ performance gap recovery closer to 1



### Intrinsic dimension



When faced with multiple hypotheses, the simplest is usually the best





**Intrinsic dimension** = the minimal number of model parameters needed to achieve (nearly) optimal performance on a specific task







# Low intrinsic dimension of finetuning







# Finetuning with low intrinsic dimensions

#### Downstream task

- $(x, y) \sim \mathcal{D}(f_*)$  s.t.  $y = f_*(x) + z$  with i.i.d. noise  $z \sim \mathcal{N}(0, \sigma^2)$  and  $|f_*(x)| < 1$  a.s.
- Want to learn the ground truth function  $f_*: \mathscr{X} \to \mathbb{R}$  given access to two datasets:
  - Labeled (small) dataset:  $\widetilde{X} \in \mathcal{X}^n$  with noisy labels  $\widetilde{y} \in \mathbb{R}^n$
  - Unlabeled (large) dataset:  $X \in \mathscr{X}^N$  with unknown labels  $y \in \mathbb{R}^N$

#### <u>Finetuning (FT) $\approx$ linear probing on low-rank gradient features</u>

- FT fall in kernel regime:  $f(x \mid \theta) = \phi(x)^{\top} \theta$  with finetunable parameter  $\theta \in \mathbb{R}^d$ 
  - Nonlinear case:  $\phi(x) = \nabla_{\theta} f(x | \theta_0)$  = gradient at pretrained initialization  $\theta_0 \in \mathbb{R}^d$
- Weak model  $\phi_w : \mathscr{X} \to \mathbb{R}^d$  produces  $\Phi_w = \phi_w(\widetilde{X}) \in \mathbb{R}^{n \times d}$ ,  $\Phi_w = \phi_w(X) \in \mathbb{R}^{N \times d}$
- Strong model  $\phi_s : \mathscr{X} \to \mathbb{R}^d$  produces  $\Phi_s = \phi_s(\widetilde{X}) \in \mathbb{R}^{n \times d}$ ,  $\Phi_s = \phi_s(X) \in \mathbb{R}^{N \times d}$

 $\operatorname{rank}(\Sigma_w) = d_w \ll d$   $\operatorname{rank}(\Sigma_s) = d_s \ll d^{\checkmark}$ 

$$\Sigma_{w} = \mathbb{E}[\phi_{w}(x)\phi_{w}]$$
$$\Sigma_{s} = \mathbb{E}[\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_{s}(x)\phi_$$



## Weak v.s. strong: model capacity + similarity

Representation <u>efficiency</u> — **low intrinsic**  $rank(\Sigma_w) = d_w \ll$ 

Representation <u>accuracy</u> — **FT approxima**  $\rho_s := \min_{\theta \in \mathbb{R}^d} \mathbb{E}[(\phi_s(x)^{\mathsf{T}}\theta - f_*(x))^2]$ We are interested in the variance-dominate

Representation <u>similarity</u> — correlation dir  $\Sigma_{s} = \begin{array}{c}V_{s} & \Sigma_{s} & V_{s}^{\top}\\ d \times d_{s} & d_{s} \times d_{s}\end{array}$ The correlation dimension of  $(\phi_{s}, \phi_{w})$  is  $d_{s \wedge s}$ 

dimensions:  

$$d \quad \operatorname{rank}(\Sigma_s) = d_s \ll d$$
ation error:  $0 \le \rho_s \le \rho_w \le 1$  where  
and  $\rho_w := \min_{\theta \in \mathbb{R}^d} \mathbb{E}[(\phi_w(x)^{\mathsf{T}}\theta - f_*(x))^2].$ 
and regime  $\rho_s + \rho_w \ll \sigma^2$ .

Representation similarity — correlation dimension: Consider spectral decompositions

and 
$$\Sigma_w = V_w \sum_{\substack{d \times d_w \\ d_w \times d_w}} V_w^{\top}$$
.  
 $W = \|V_s^{\top} V_w\|_F^2 \text{ s.t. } 0 \le d_{s \land w} \le \min\{d_s, d_w\}.$ 

## W2S finetuning as ridgeless regression



Ridgeless regression: with all  $\alpha \rightarrow 0$ 

$$n \frac{1}{n+N} \left\| \begin{bmatrix} \widetilde{\Phi}_s \\ \Phi_s \end{bmatrix} \theta - \begin{bmatrix} \widetilde{y} \\ y \end{bmatrix} \right\|_2^2 + \alpha \|\theta\|_2^2$$



### W2S generalization error: ridgeless regression

With randomness in *f* from training data: ER(f) = Var(f) + Bias(f) where  $Var(f) = \mathbb{E}_{x}[\mathbb{E}_{f}[(f(x) - \mathbb{E}_{f}[f(x)])^{2}]]$   $Bias(f) = \mathbb{E}_{x}[(\mathbb{E}_{f}[f(x)] - f_{*}(x))^{2}]$ Proposition [DLLLL25].

$$\operatorname{Var}(f_w) = \sigma^2 \frac{d_w}{n}, \quad \operatorname{Bias}(f_w) \le \rho_w$$
$$\operatorname{Var}(f_s) = \sigma^2 \frac{d_s}{n}, \quad \operatorname{Bias}(f_s) \le \rho_s$$
$$\operatorname{Var}(f_c) = \sigma^2 \frac{d_s}{n+N}, \quad \operatorname{Bias}(f_c) \le \rho_s$$

Theorem [DLLLL25]. Assume  $\phi_s(x)$  is zero-mean subgaussian and  $\phi_w(x) \sim \mathcal{N}(0_d, \Sigma_w)$  (can be relaxed to subgaussian), for  $n > d_w + 1$ :  $\operatorname{Var}(f_{w2s}) = \frac{\sigma^2}{n - d_w - 1} \left( d_{s \wedge w} + \frac{d_s}{N} (d_w - d_{s \wedge w}) \right)$  $\operatorname{Bias}(f_{w2s}) \le \rho_w + \rho_s$ 

$$\mathcal{V}_{s} = \operatorname{Range}(\Sigma_{s}), \ \mathcal{V}_{w} = \operatorname{Range}(\Sigma_{w})$$
$$\operatorname{Var}(f_{w2s}) \asymp \left[ \frac{d_{s \wedge w}}{n} + \frac{d_{s}}{N} \right] \left[ \frac{d_{w} - d_{s \wedge w}}{n} \right]$$
$$\operatorname{Var}(f_{w2s}) \asymp \left[ \frac{d_{v} - d_{v}}{n} \right] \left[ \frac{d_{v} - d_{v}}{v} \right]$$

W

## Intuition: How does variance reduction in W2S happen?

 $\mathcal{V}_{s} = \operatorname{Range}(\Sigma_{s})$ 

$$\operatorname{Var}(f_{w2s}) \asymp$$

$$\frac{d_{s \wedge w}}{n}$$

Var. in  $\mathcal{V}_{w} \cap$ 



), 
$$\mathcal{V}_{w} = \operatorname{Range}(\Sigma_{w})$$
  
+  $\begin{pmatrix} d_{s} \\ N \end{pmatrix} \begin{pmatrix} d_{w} - d_{s \wedge w} \\ n \end{pmatrix}$   
 $\chi_{s}$  W2S Var. in  $\mathcal{V}_{w} \backslash \mathcal{V}_{s}$ 

 $f_*$  in  $\mathcal{V}_w$ 

Pseudolabel error in  $\mathcal{V}_{w} \setminus \mathcal{V}_{s}$  can be viewed as independent label noise w.r.t. the orthogonal strong features  $\mathcal{V}_{s}$ , variance from which reduces proportionally to  $d_{\rm s}/N$ .

#### Suitable regularization is essential for W2S: ridge regression

- Positive-definite covariances:  $\Sigma_w, \Sigma_s, \Sigma_* > 0$
- $f_*(x) = \phi_*(x)^\top \theta_*, \ \theta_* \in \mathbb{R}^d, \ \mathbb{E}[\phi_*(x)\phi_*(x)^\top] = \Sigma_*$
- Normalized features:  $\|\Sigma_w\|_2 \asymp \|\Sigma_s\|_2 \asymp \|\Sigma_*\|_2 \asymp$
- Intrinsic dimensions:  $\operatorname{tr}(\Sigma_w) \leq d_w$ ,  $\operatorname{tr}(\Sigma_s) \leq d_s$

Theorem [DLLL25]. Let 
$$\varrho_w = \|\Sigma_w^{-1/2} \Sigma_*^{1/2} \theta_*\|_2^2$$
,  
 $\varrho_s = \|\Sigma_s^{-1/2} \Sigma_*^{1/2} \theta_*\|_2^2$ . For ridge parameters  
 $\alpha_w = \frac{\sigma^2 \operatorname{tr}(\Sigma_s \Sigma_w)}{4nN} \frac{\varrho_s}{\varrho_w^2}$  and  $\alpha_{w2s} = \frac{\sigma^2 \operatorname{tr}(\Sigma_s \Sigma_w)}{4nN} \frac{\varrho_w}{\varrho_s^2}$ ,  
 $\operatorname{ER}(f_{w2s}) \leq 3 \left(\frac{\sigma^2}{4nN} \operatorname{tr}(\Sigma_s \Sigma_w) \varrho_s \varrho_w\right)^{1/3}$ .

Choose some suitable 
$$\alpha_w, \alpha_{w2s} > 0$$
 s.t.  
 $\theta_w = \arg \min_{\theta \in \mathbb{R}^d} \frac{1}{n} \|\widetilde{\Phi}_w \theta - \widetilde{y}\|_2^2 + \alpha_w \|\theta\|_2^2$   
 $\theta_{w2s} = \arg \min_{\theta \in \mathbb{R}^d} \frac{1}{N} \|\Phi_s \theta - \Phi_w \theta_w\|_2^2 + \alpha_{w2s} \|\theta\|$ 

• <u>Multiplicative</u> sample complexity:

$$nN \asymp \sigma^2 \operatorname{tr}(\Sigma_s \Sigma_w) \varrho_s \varrho_w$$

• Weak-strong similarity ("correlation dimension  $d_{s \wedge w}$ "):

 $\operatorname{tr}(\Sigma_{s}\Sigma_{w}) \lesssim \min\{\operatorname{tr}(\Sigma_{s}), \operatorname{tr}(\Sigma_{w})\}$ 

• Coverage ("FT approximation error"):  $Q_w$ ,  $Q_s$  are small if the dominating eigenspaces of  $\Sigma_w$ ,  $\Sigma_s$  cover that of  $\Sigma_*$ 



#### Larger discrepancy (lower

Performance gap recove





With negligible FT approx when  $n \gtrsim d_w$  and  $N \gtrsim d_s$  $PGR \ge 1 - O(d_{s \land w}/d_w)$  and  $OPR \ge \Omega(d_s/d_{s \land w})$ 

$$d_{s \wedge w}$$
)  $\rightarrow$  better W2S

**ry:** PGR = 
$$\frac{\text{ER}(f_w) - \text{ER}(f_{w2s})}{\text{ER}(f_w) - \text{ER}(f_c)}$$

**ratio:** OPR = 
$$\frac{\text{ER}(f_s)}{\text{ER}(f_{w2s})}$$

timation error 
$$(\rho_w + \rho_s)/\sigma^2 \rightarrow 0$$
,  
 $(d_w/d_{s \wedge w} - 1)$ , we have

## Synthetic experiments



 Our bounds provide reasonably tight characterization for the generalization error, PGR, and OPR. • W2S is more beneficial with limited label data n - PGR and OPR decrease as n increases!

#### **UTKFace regression**

#### Lower $d_{s \wedge w}/d_w \rightarrow \text{better W2S}$



#### Larger variance $\rightarrow$ more pronounced W2S

### Takeaway: teacher-student discrepancy $\rightarrow$ better W2S

How does W2S happen on easy tasks where weak and strong models both have low approximation errors? Through lens of low intrinsic dimension: • Representation efficiency:  $rank(\Sigma_s) = d_s$ ,  $rank(\Sigma_w) = d_w \ll d$ • Representation similarity: correlation dimension  $d_{S \wedge W} = \|V_S^{\top} V_W\|_F^2 \in [0, \min\{d_S, d_W\}]$ 

$$\operatorname{Var}(f_{w2s}) \asymp$$





# Thank you! Happy to take any questions



Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension. Yijun Dong, Yicheng Li, Yunai Li, Jason D. Lee, and Qi Lei. ICML 2025.

#### References

Aghajanyan, Armen, Luke Zettlemoyer, and Sonal Gupta. "Intrinsic dimensionality explains the effectiveness of language model fine-tuning." arXiv preprint arXiv:2012.13255 (2020).

Burns, Collin, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner, Yining Chen et al. "Weak-to-strong generalization: Eliciting strong capabilities with weak supervision." arXiv preprint arXiv:2312.09390 (2023).

Ildiz, M. Emrullah, Halil Alperen Gozeten, Ege Onur Taga, Marco Mondelli, and Samet Oymak. "Highdimensional analysis of knowledge distillation: Weak-to-strong generalization and scaling laws." *arXiv preprint arXiv:2410.18837* (2024).

Wu, David X., and Anant Sahai. "Provable weak-to-strong generalization via benign overfitting." arXiv preprint arXiv:2410.04638 (2024).